| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) | 
| Ref | Expression | 
|---|---|
| simpr2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1000 | 
. 2
 | |
| 2 | 1 | adantl 277 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1358 isopolem 5869 tfrlemibacc 6384 tfrlemibfn 6386 tfr1onlembacc 6400 tfr1onlembfn 6402 tfrcllembacc 6413 tfrcllembfn 6415 prltlu 7554 prdisj 7559 prmuloc2 7634 ltntri 8154 eluzuzle 9609 xlesubadd 9958 elioc2 10011 elico2 10012 elicc2 10013 fseq1p1m1 10169 fz0fzelfz0 10202 seq3f1olemp 10607 bcval5 10855 hashdifpr 10912 summodclem2 11547 isumss2 11558 tanaddap 11904 dvds2ln 11989 divalglemeunn 12086 divalglemex 12087 divalglemeuneg 12088 isstructr 12693 f1ovscpbl 12955 mndissubm 13107 grpsubrcan 13213 grpsubadd 13220 grpaddsubass 13222 grpsubsub4 13225 grppnpcan2 13226 grpnpncan 13227 mulgnndir 13281 mulgnn0dir 13282 mulgdir 13284 mulgnnass 13287 mulgnn0ass 13288 mulgass 13289 mulgsubdir 13292 issubg2m 13319 eqgval 13353 qusgrp 13362 cmn32 13434 cmn12 13436 abladdsub 13445 ablsubsub23 13455 rngass 13495 srgdilem 13525 srgass 13527 ringdilem 13568 ringass 13572 opprrng 13633 opprring 13635 mulgass3 13641 unitgrp 13672 dvrass 13695 dvrdir 13699 subrgunit 13795 issubrg2 13797 aprap 13842 lsssn0 13926 islss3 13935 sralmod 14006 restopnb 14417 icnpimaex 14447 cnptopresti 14474 psmettri 14566 isxmet2d 14584 xmettri 14608 metrtri 14613 xmetres2 14615 bldisj 14637 blss2ps 14642 blss2 14643 xmstri2 14706 mstri2 14707 xmstri 14708 mstri 14709 xmstri3 14710 mstri3 14711 msrtri 14712 comet 14735 bdbl 14739 xmetxp 14743 dvconst 14930 dvconstre 14932 dvconstss 14934 sgmmul 15232 gausslemma2dlem1a 15299 | 
| Copyright terms: Public domain | W3C validator |