| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr2 1043 simprr2 1049 simp1r2 1097 simp2r2 1103 simp3r2 1109 3anandis 1360 isopolem 5904 tfrlemibacc 6425 tfrlemibfn 6427 tfr1onlembacc 6441 tfr1onlembfn 6443 tfrcllembacc 6454 tfrcllembfn 6456 prltlu 7620 prdisj 7625 prmuloc2 7700 ltntri 8220 eluzuzle 9676 xlesubadd 10025 elioc2 10078 elico2 10079 elicc2 10080 fseq1p1m1 10236 fz0fzelfz0 10269 seq3f1olemp 10682 bcval5 10930 hashdifpr 10987 swrdsbslen 11142 ccatswrd 11146 swrdswrdlem 11180 summodclem2 11768 isumss2 11779 tanaddap 12125 dvds2ln 12210 divalglemeunn 12307 divalglemex 12308 divalglemeuneg 12309 isstructr 12922 f1ovscpbl 13219 prdssgrpd 13322 prdsmndd 13355 mndissubm 13382 grpsubrcan 13488 grpsubadd 13495 grpaddsubass 13497 grpsubsub4 13500 grppnpcan2 13501 grpnpncan 13502 mulgnndir 13562 mulgnn0dir 13563 mulgdir 13565 mulgnnass 13568 mulgnn0ass 13569 mulgass 13570 mulgsubdir 13573 issubg2m 13600 eqgval 13634 qusgrp 13643 cmn32 13715 cmn12 13717 abladdsub 13726 ablsubsub23 13736 rngass 13776 srgdilem 13806 srgass 13808 ringdilem 13849 ringass 13853 opprrng 13914 opprring 13916 mulgass3 13922 unitgrp 13953 dvrass 13976 dvrdir 13980 subrgunit 14076 issubrg2 14078 aprap 14123 lsssn0 14207 islss3 14216 sralmod 14287 restopnb 14728 icnpimaex 14758 cnptopresti 14785 psmettri 14877 isxmet2d 14895 xmettri 14919 metrtri 14924 xmetres2 14926 bldisj 14948 blss2ps 14953 blss2 14954 xmstri2 15017 mstri2 15018 xmstri 15019 mstri 15020 xmstri3 15021 mstri3 15022 msrtri 15023 comet 15046 bdbl 15050 xmetxp 15054 dvconst 15241 dvconstre 15243 dvconstss 15245 sgmmul 15543 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |