| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1359 isopolem 5890 tfrlemibacc 6411 tfrlemibfn 6413 tfr1onlembacc 6427 tfr1onlembfn 6429 tfrcllembacc 6440 tfrcllembfn 6442 prltlu 7599 prdisj 7604 prmuloc2 7679 ltntri 8199 eluzuzle 9655 xlesubadd 10004 elioc2 10057 elico2 10058 elicc2 10059 fseq1p1m1 10215 fz0fzelfz0 10248 seq3f1olemp 10658 bcval5 10906 hashdifpr 10963 summodclem2 11664 isumss2 11675 tanaddap 12021 dvds2ln 12106 divalglemeunn 12203 divalglemex 12204 divalglemeuneg 12205 isstructr 12818 f1ovscpbl 13115 prdssgrpd 13218 prdsmndd 13251 mndissubm 13278 grpsubrcan 13384 grpsubadd 13391 grpaddsubass 13393 grpsubsub4 13396 grppnpcan2 13397 grpnpncan 13398 mulgnndir 13458 mulgnn0dir 13459 mulgdir 13461 mulgnnass 13464 mulgnn0ass 13465 mulgass 13466 mulgsubdir 13469 issubg2m 13496 eqgval 13530 qusgrp 13539 cmn32 13611 cmn12 13613 abladdsub 13622 ablsubsub23 13632 rngass 13672 srgdilem 13702 srgass 13704 ringdilem 13745 ringass 13749 opprrng 13810 opprring 13812 mulgass3 13818 unitgrp 13849 dvrass 13872 dvrdir 13876 subrgunit 13972 issubrg2 13974 aprap 14019 lsssn0 14103 islss3 14112 sralmod 14183 restopnb 14624 icnpimaex 14654 cnptopresti 14681 psmettri 14773 isxmet2d 14791 xmettri 14815 metrtri 14820 xmetres2 14822 bldisj 14844 blss2ps 14849 blss2 14850 xmstri2 14913 mstri2 14914 xmstri 14915 mstri 14916 xmstri3 14917 mstri3 14918 msrtri 14919 comet 14942 bdbl 14946 xmetxp 14950 dvconst 15137 dvconstre 15139 dvconstss 15141 sgmmul 15439 gausslemma2dlem1a 15506 |
| Copyright terms: Public domain | W3C validator |