Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 998 | . 2 | |
2 | 1 | adantl 277 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simplr2 1040 simprr2 1046 simp1r2 1094 simp2r2 1100 simp3r2 1106 3anandis 1347 isopolem 5813 tfrlemibacc 6317 tfrlemibfn 6319 tfr1onlembacc 6333 tfr1onlembfn 6335 tfrcllembacc 6346 tfrcllembfn 6348 prltlu 7461 prdisj 7466 prmuloc2 7541 ltntri 8059 eluzuzle 9507 xlesubadd 9852 elioc2 9905 elico2 9906 elicc2 9907 fseq1p1m1 10062 fz0fzelfz0 10095 seq3f1olemp 10470 bcval5 10709 hashdifpr 10766 summodclem2 11356 isumss2 11367 tanaddap 11713 dvds2ln 11797 divalglemeunn 11891 divalglemex 11892 divalglemeuneg 11893 isstructr 12442 mndissubm 12726 grpsubrcan 12810 grpsubadd 12817 grpaddsubass 12819 grpsubsub4 12822 grppnpcan2 12823 grpnpncan 12824 mulgnndir 12870 mulgnn0dir 12871 mulgdir 12873 mulgnnass 12876 mulgnn0ass 12877 mulgass 12878 mulgsubdir 12881 cmn32 12903 cmn12 12905 abladdsub 12914 ablsubsub23 12924 srgdilem 12945 srgass 12947 ringdilem 12988 ringass 12992 restopnb 13232 icnpimaex 13262 cnptopresti 13289 psmettri 13381 isxmet2d 13399 xmettri 13423 metrtri 13428 xmetres2 13430 bldisj 13452 blss2ps 13457 blss2 13458 xmstri2 13521 mstri2 13522 xmstri 13523 mstri 13524 xmstri3 13525 mstri3 13526 msrtri 13527 comet 13550 bdbl 13554 xmetxp 13558 dvconst 13712 |
Copyright terms: Public domain | W3C validator |