| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1359 isopolem 5881 tfrlemibacc 6402 tfrlemibfn 6404 tfr1onlembacc 6418 tfr1onlembfn 6420 tfrcllembacc 6431 tfrcllembfn 6433 prltlu 7582 prdisj 7587 prmuloc2 7662 ltntri 8182 eluzuzle 9638 xlesubadd 9987 elioc2 10040 elico2 10041 elicc2 10042 fseq1p1m1 10198 fz0fzelfz0 10231 seq3f1olemp 10641 bcval5 10889 hashdifpr 10946 summodclem2 11612 isumss2 11623 tanaddap 11969 dvds2ln 12054 divalglemeunn 12151 divalglemex 12152 divalglemeuneg 12153 isstructr 12766 f1ovscpbl 13062 prdssgrpd 13165 prdsmndd 13198 mndissubm 13225 grpsubrcan 13331 grpsubadd 13338 grpaddsubass 13340 grpsubsub4 13343 grppnpcan2 13344 grpnpncan 13345 mulgnndir 13405 mulgnn0dir 13406 mulgdir 13408 mulgnnass 13411 mulgnn0ass 13412 mulgass 13413 mulgsubdir 13416 issubg2m 13443 eqgval 13477 qusgrp 13486 cmn32 13558 cmn12 13560 abladdsub 13569 ablsubsub23 13579 rngass 13619 srgdilem 13649 srgass 13651 ringdilem 13692 ringass 13696 opprrng 13757 opprring 13759 mulgass3 13765 unitgrp 13796 dvrass 13819 dvrdir 13823 subrgunit 13919 issubrg2 13921 aprap 13966 lsssn0 14050 islss3 14059 sralmod 14130 restopnb 14571 icnpimaex 14601 cnptopresti 14628 psmettri 14720 isxmet2d 14738 xmettri 14762 metrtri 14767 xmetres2 14769 bldisj 14791 blss2ps 14796 blss2 14797 xmstri2 14860 mstri2 14861 xmstri 14862 mstri 14863 xmstri3 14864 mstri3 14865 msrtri 14866 comet 14889 bdbl 14893 xmetxp 14897 dvconst 15084 dvconstre 15086 dvconstss 15088 sgmmul 15386 gausslemma2dlem1a 15453 |
| Copyright terms: Public domain | W3C validator |