| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1000 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr2 1042 simprr2 1048 simp1r2 1096 simp2r2 1102 simp3r2 1108 3anandis 1359 isopolem 5890 tfrlemibacc 6411 tfrlemibfn 6413 tfr1onlembacc 6427 tfr1onlembfn 6429 tfrcllembacc 6440 tfrcllembfn 6442 prltlu 7599 prdisj 7604 prmuloc2 7679 ltntri 8199 eluzuzle 9655 xlesubadd 10004 elioc2 10057 elico2 10058 elicc2 10059 fseq1p1m1 10215 fz0fzelfz0 10248 seq3f1olemp 10658 bcval5 10906 hashdifpr 10963 summodclem2 11635 isumss2 11646 tanaddap 11992 dvds2ln 12077 divalglemeunn 12174 divalglemex 12175 divalglemeuneg 12176 isstructr 12789 f1ovscpbl 13086 prdssgrpd 13189 prdsmndd 13222 mndissubm 13249 grpsubrcan 13355 grpsubadd 13362 grpaddsubass 13364 grpsubsub4 13367 grppnpcan2 13368 grpnpncan 13369 mulgnndir 13429 mulgnn0dir 13430 mulgdir 13432 mulgnnass 13435 mulgnn0ass 13436 mulgass 13437 mulgsubdir 13440 issubg2m 13467 eqgval 13501 qusgrp 13510 cmn32 13582 cmn12 13584 abladdsub 13593 ablsubsub23 13603 rngass 13643 srgdilem 13673 srgass 13675 ringdilem 13716 ringass 13720 opprrng 13781 opprring 13783 mulgass3 13789 unitgrp 13820 dvrass 13843 dvrdir 13847 subrgunit 13943 issubrg2 13945 aprap 13990 lsssn0 14074 islss3 14083 sralmod 14154 restopnb 14595 icnpimaex 14625 cnptopresti 14652 psmettri 14744 isxmet2d 14762 xmettri 14786 metrtri 14791 xmetres2 14793 bldisj 14815 blss2ps 14820 blss2 14821 xmstri2 14884 mstri2 14885 xmstri 14886 mstri 14887 xmstri3 14888 mstri3 14889 msrtri 14890 comet 14913 bdbl 14917 xmetxp 14921 dvconst 15108 dvconstre 15110 dvconstss 15112 sgmmul 15410 gausslemma2dlem1a 15477 |
| Copyright terms: Public domain | W3C validator |