| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr2 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simplr2 1064 simprr2 1070 simp1r2 1118 simp2r2 1124 simp3r2 1130 3anandis 1381 isopolem 5945 tfrlemibacc 6470 tfrlemibfn 6472 tfr1onlembacc 6486 tfr1onlembfn 6488 tfrcllembacc 6499 tfrcllembfn 6501 prltlu 7670 prdisj 7675 prmuloc2 7750 ltntri 8270 eluzuzle 9726 xlesubadd 10075 elioc2 10128 elico2 10129 elicc2 10130 fseq1p1m1 10286 fz0fzelfz0 10319 seq3f1olemp 10732 bcval5 10980 hashdifpr 11037 swrdsbslen 11193 ccatswrd 11197 swrdswrdlem 11231 summodclem2 11888 isumss2 11899 tanaddap 12245 dvds2ln 12330 divalglemeunn 12427 divalglemex 12428 divalglemeuneg 12429 isstructr 13042 f1ovscpbl 13340 prdssgrpd 13443 prdsmndd 13476 mndissubm 13503 grpsubrcan 13609 grpsubadd 13616 grpaddsubass 13618 grpsubsub4 13621 grppnpcan2 13622 grpnpncan 13623 mulgnndir 13683 mulgnn0dir 13684 mulgdir 13686 mulgnnass 13689 mulgnn0ass 13690 mulgass 13691 mulgsubdir 13694 issubg2m 13721 eqgval 13755 qusgrp 13764 cmn32 13836 cmn12 13838 abladdsub 13847 ablsubsub23 13857 rngass 13897 srgdilem 13927 srgass 13929 ringdilem 13970 ringass 13974 opprrng 14035 opprring 14037 mulgass3 14043 unitgrp 14074 dvrass 14097 dvrdir 14101 subrgunit 14197 issubrg2 14199 aprap 14244 lsssn0 14328 islss3 14337 sralmod 14408 restopnb 14849 icnpimaex 14879 cnptopresti 14906 psmettri 14998 isxmet2d 15016 xmettri 15040 metrtri 15045 xmetres2 15047 bldisj 15069 blss2ps 15074 blss2 15075 xmstri2 15138 mstri2 15139 xmstri 15140 mstri 15141 xmstri3 15142 mstri3 15143 msrtri 15144 comet 15167 bdbl 15171 xmetxp 15175 dvconst 15362 dvconstre 15364 dvconstss 15366 sgmmul 15664 gausslemma2dlem1a 15731 |
| Copyright terms: Public domain | W3C validator |