| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1023 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simplr3 1065 simprr3 1071 simp1r3 1119 simp2r3 1125 simp3r3 1131 3anandis 1381 isopolem 5945 tfrlemibacc 6470 tfrlemibxssdm 6471 tfrlemibfn 6472 tfr1onlembacc 6486 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfrcllembacc 6499 tfrcllembxssdm 6500 tfrcllembfn 6501 elfir 7136 prloc 7674 prmuloc2 7750 ltntri 8270 eluzuzle 9726 xlesubadd 10075 elioc2 10128 elico2 10129 elicc2 10130 fseq1p1m1 10286 seq3f1olemp 10732 seq3f1oleml 10733 bcval5 10980 hashdifpr 11037 ccatswrd 11197 pfxccat3a 11265 isumss2 11899 tanaddap 12245 dvds2ln 12330 divalglemeunn 12427 divalglemex 12428 divalglemeuneg 12429 f1ovscpbl 13340 prdssgrpd 13443 prdsmndd 13476 imasmnd2 13480 imasmnd 13481 grpsubadd 13616 grpaddsubass 13618 grpsubsub4 13621 grppnpcan2 13622 grpnpncan 13623 grpnnncan2 13625 imasgrp2 13642 imasgrp 13643 mulgnndir 13683 mulgnn0dir 13684 mulgnnass 13689 mulgnn0ass 13690 mulgass 13691 issubg2m 13721 qusgrp 13764 kerf1ghm 13806 cmn32 13836 cmn12 13838 abladdsub 13847 ablsubsub23 13857 rngass 13897 imasrng 13914 srgdilem 13927 srgass 13929 ringdilem 13970 ringass 13974 ringrng 13994 imasring 14022 opprrng 14035 opprring 14037 mulgass3 14043 unitgrp 14074 dvrass 14097 dvrdir 14101 subrgunit 14197 issubrg2 14199 aprap 14244 lss1 14320 lsssn0 14328 islss3 14337 sralmod 14408 restopnb 14849 icnpimaex 14879 cnptopresti 14906 psmettri 14998 isxmet2d 15016 xmettri 15040 metrtri 15045 xmetres2 15047 bldisj 15069 blss2ps 15074 blss2 15075 xmstri2 15138 mstri2 15139 xmstri 15140 mstri 15141 xmstri3 15142 mstri3 15143 msrtri 15144 comet 15167 bdbl 15171 xmetxp 15175 dvconst 15362 dvconstre 15364 dvconstss 15366 sgmmul 15664 |
| Copyright terms: Public domain | W3C validator |