| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr3 1044 simprr3 1050 simp1r3 1098 simp2r3 1104 simp3r3 1110 3anandis 1360 isopolem 5909 tfrlemibacc 6430 tfrlemibxssdm 6431 tfrlemibfn 6432 tfr1onlembacc 6446 tfr1onlembxssdm 6447 tfr1onlembfn 6448 tfrcllembacc 6459 tfrcllembxssdm 6460 tfrcllembfn 6461 elfir 7096 prloc 7634 prmuloc2 7710 ltntri 8230 eluzuzle 9686 xlesubadd 10035 elioc2 10088 elico2 10089 elicc2 10090 fseq1p1m1 10246 seq3f1olemp 10692 seq3f1oleml 10693 bcval5 10940 hashdifpr 10997 ccatswrd 11156 isumss2 11789 tanaddap 12135 dvds2ln 12220 divalglemeunn 12317 divalglemex 12318 divalglemeuneg 12319 f1ovscpbl 13229 prdssgrpd 13332 prdsmndd 13365 imasmnd2 13369 imasmnd 13370 grpsubadd 13505 grpaddsubass 13507 grpsubsub4 13510 grppnpcan2 13511 grpnpncan 13512 grpnnncan2 13514 imasgrp2 13531 imasgrp 13532 mulgnndir 13572 mulgnn0dir 13573 mulgnnass 13578 mulgnn0ass 13579 mulgass 13580 issubg2m 13610 qusgrp 13653 kerf1ghm 13695 cmn32 13725 cmn12 13727 abladdsub 13736 ablsubsub23 13746 rngass 13786 imasrng 13803 srgdilem 13816 srgass 13818 ringdilem 13859 ringass 13863 ringrng 13883 imasring 13911 opprrng 13924 opprring 13926 mulgass3 13932 unitgrp 13963 dvrass 13986 dvrdir 13990 subrgunit 14086 issubrg2 14088 aprap 14133 lss1 14209 lsssn0 14217 islss3 14226 sralmod 14297 restopnb 14738 icnpimaex 14768 cnptopresti 14795 psmettri 14887 isxmet2d 14905 xmettri 14929 metrtri 14934 xmetres2 14936 bldisj 14958 blss2ps 14963 blss2 14964 xmstri2 15027 mstri2 15028 xmstri 15029 mstri 15030 xmstri3 15031 mstri3 15032 msrtri 15033 comet 15056 bdbl 15060 xmetxp 15064 dvconst 15251 dvconstre 15253 dvconstss 15255 sgmmul 15553 |
| Copyright terms: Public domain | W3C validator |