| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr3 1044 simprr3 1050 simp1r3 1098 simp2r3 1104 simp3r3 1110 3anandis 1360 isopolem 5891 tfrlemibacc 6412 tfrlemibxssdm 6413 tfrlemibfn 6414 tfr1onlembacc 6428 tfr1onlembxssdm 6429 tfr1onlembfn 6430 tfrcllembacc 6441 tfrcllembxssdm 6442 tfrcllembfn 6443 elfir 7075 prloc 7604 prmuloc2 7680 ltntri 8200 eluzuzle 9656 xlesubadd 10005 elioc2 10058 elico2 10059 elicc2 10060 fseq1p1m1 10216 seq3f1olemp 10660 seq3f1oleml 10661 bcval5 10908 hashdifpr 10965 ccatswrd 11123 isumss2 11704 tanaddap 12050 dvds2ln 12135 divalglemeunn 12232 divalglemex 12233 divalglemeuneg 12234 f1ovscpbl 13144 prdssgrpd 13247 prdsmndd 13280 imasmnd2 13284 imasmnd 13285 grpsubadd 13420 grpaddsubass 13422 grpsubsub4 13425 grppnpcan2 13426 grpnpncan 13427 grpnnncan2 13429 imasgrp2 13446 imasgrp 13447 mulgnndir 13487 mulgnn0dir 13488 mulgnnass 13493 mulgnn0ass 13494 mulgass 13495 issubg2m 13525 qusgrp 13568 kerf1ghm 13610 cmn32 13640 cmn12 13642 abladdsub 13651 ablsubsub23 13661 rngass 13701 imasrng 13718 srgdilem 13731 srgass 13733 ringdilem 13774 ringass 13778 ringrng 13798 imasring 13826 opprrng 13839 opprring 13841 mulgass3 13847 unitgrp 13878 dvrass 13901 dvrdir 13905 subrgunit 14001 issubrg2 14003 aprap 14048 lss1 14124 lsssn0 14132 islss3 14141 sralmod 14212 restopnb 14653 icnpimaex 14683 cnptopresti 14710 psmettri 14802 isxmet2d 14820 xmettri 14844 metrtri 14849 xmetres2 14851 bldisj 14873 blss2ps 14878 blss2 14879 xmstri2 14942 mstri2 14943 xmstri 14944 mstri 14945 xmstri3 14946 mstri3 14947 msrtri 14948 comet 14971 bdbl 14975 xmetxp 14979 dvconst 15166 dvconstre 15168 dvconstss 15170 sgmmul 15468 |
| Copyright terms: Public domain | W3C validator |