| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 |
. 2
| |
| 2 | 1 | adantl 277 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr3 1043 simprr3 1049 simp1r3 1097 simp2r3 1103 simp3r3 1109 3anandis 1358 isopolem 5872 tfrlemibacc 6393 tfrlemibxssdm 6394 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembxssdm 6423 tfrcllembfn 6424 elfir 7048 prloc 7575 prmuloc2 7651 ltntri 8171 eluzuzle 9626 xlesubadd 9975 elioc2 10028 elico2 10029 elicc2 10030 fseq1p1m1 10186 seq3f1olemp 10624 seq3f1oleml 10625 bcval5 10872 hashdifpr 10929 isumss2 11575 tanaddap 11921 dvds2ln 12006 divalglemeunn 12103 divalglemex 12104 divalglemeuneg 12105 f1ovscpbl 13014 prdssgrpd 13117 prdsmndd 13150 imasmnd2 13154 imasmnd 13155 grpsubadd 13290 grpaddsubass 13292 grpsubsub4 13295 grppnpcan2 13296 grpnpncan 13297 grpnnncan2 13299 imasgrp2 13316 imasgrp 13317 mulgnndir 13357 mulgnn0dir 13358 mulgnnass 13363 mulgnn0ass 13364 mulgass 13365 issubg2m 13395 qusgrp 13438 kerf1ghm 13480 cmn32 13510 cmn12 13512 abladdsub 13521 ablsubsub23 13531 rngass 13571 imasrng 13588 srgdilem 13601 srgass 13603 ringdilem 13644 ringass 13648 ringrng 13668 imasring 13696 opprrng 13709 opprring 13711 mulgass3 13717 unitgrp 13748 dvrass 13771 dvrdir 13775 subrgunit 13871 issubrg2 13873 aprap 13918 lss1 13994 lsssn0 14002 islss3 14011 sralmod 14082 restopnb 14501 icnpimaex 14531 cnptopresti 14558 psmettri 14650 isxmet2d 14668 xmettri 14692 metrtri 14697 xmetres2 14699 bldisj 14721 blss2ps 14726 blss2 14727 xmstri2 14790 mstri2 14791 xmstri 14792 mstri 14793 xmstri3 14794 mstri3 14795 msrtri 14796 comet 14819 bdbl 14823 xmetxp 14827 dvconst 15014 dvconstre 15016 dvconstss 15018 sgmmul 15316 |
| Copyright terms: Public domain | W3C validator |