ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3i Unicode version

Theorem 3eltr3i 2238
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3.1  |-  A  e.  B
3eltr3.2  |-  A  =  C
3eltr3.3  |-  B  =  D
Assertion
Ref Expression
3eltr3i  |-  C  e.  D

Proof of Theorem 3eltr3i
StepHypRef Expression
1 3eltr3.2 . 2  |-  A  =  C
2 3eltr3.1 . . 3  |-  A  e.  B
3 3eltr3.3 . . 3  |-  B  =  D
42, 3eleqtri 2232 . 2  |-  A  e.  D
51, 4eqeltrri 2231 1  |-  C  e.  D
Colors of variables: wff set class
Syntax hints:    = wceq 1335    e. wcel 2128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-clel 2153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator