Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | |
eleqtrrd.2 |
Ref | Expression |
---|---|
eleqtrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 | |
2 | eleqtrrd.2 | . . 3 | |
3 | 2 | eqcomd 2181 | . 2 |
4 | 1, 3 | eleqtrd 2254 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: 3eltr4d 2259 rspc2vd 3123 exmidsssnc 4198 tfrexlem 6325 nnsucuniel 6486 erref 6545 en1uniel 6794 fin0 6875 fin0or 6876 prarloclemarch2 7393 fzopth 10031 fzoss2 10142 fzosubel3 10166 elfzomin 10176 elfzonlteqm1 10180 fzoend 10192 fzofzp1 10197 fzofzp1b 10198 peano2fzor 10202 zmodfzo 10317 frecuzrdg0 10383 frecuzrdgsuc 10384 frecuzrdgdomlem 10387 frecuzrdg0t 10392 frecuzrdgsuctlem 10393 seq3f1olemqsum 10470 bcn2 10712 summodclem2a 11357 fisumss 11368 fsumm1 11392 fisumcom2 11414 prodmodclem2a 11552 fprodm1 11574 fprodcom2fi 11602 ennnfonelemex 12382 ctinfomlemom 12395 mndpropd 12707 grpsubpropd2 12836 srgpcomp 12970 srgpcompp 12971 srgpcomppsc 12972 ringpropd 13013 mulgass3 13049 lmtopcnp 13321 txopn 13336 blpnfctr 13510 metcnpi 13586 metcnpi2 13587 cncfmpt2fcntop 13656 limcimolemlt 13704 cnplimclemr 13709 limccnp2lem 13716 limccnp2cntop 13717 dvidlemap 13731 dvcnp2cntop 13734 dvcn 13735 dvaddxxbr 13736 dvmulxxbr 13737 dvef 13759 |
Copyright terms: Public domain | W3C validator |