Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrrd.1 | |
eleqtrrd.2 |
Ref | Expression |
---|---|
eleqtrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrrd.1 | . 2 | |
2 | eleqtrrd.2 | . . 3 | |
3 | 2 | eqcomd 2176 | . 2 |
4 | 1, 3 | eleqtrd 2249 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: 3eltr4d 2254 rspc2vd 3117 exmidsssnc 4189 tfrexlem 6313 nnsucuniel 6474 erref 6533 en1uniel 6782 fin0 6863 fin0or 6864 prarloclemarch2 7381 fzopth 10017 fzoss2 10128 fzosubel3 10152 elfzomin 10162 elfzonlteqm1 10166 fzoend 10178 fzofzp1 10183 fzofzp1b 10184 peano2fzor 10188 zmodfzo 10303 frecuzrdg0 10369 frecuzrdgsuc 10370 frecuzrdgdomlem 10373 frecuzrdg0t 10378 frecuzrdgsuctlem 10379 seq3f1olemqsum 10456 bcn2 10698 summodclem2a 11344 fisumss 11355 fsumm1 11379 fisumcom2 11401 prodmodclem2a 11539 fprodm1 11561 fprodcom2fi 11589 ennnfonelemex 12369 ctinfomlemom 12382 mndpropd 12676 lmtopcnp 13044 txopn 13059 blpnfctr 13233 metcnpi 13309 metcnpi2 13310 cncfmpt2fcntop 13379 limcimolemlt 13427 cnplimclemr 13432 limccnp2lem 13439 limccnp2cntop 13440 dvidlemap 13454 dvcnp2cntop 13457 dvcn 13458 dvaddxxbr 13459 dvmulxxbr 13460 dvef 13482 |
Copyright terms: Public domain | W3C validator |