Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | |
eqeltrr.2 |
Ref | Expression |
---|---|
eqeltrri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 | |
2 | 1 | eqcomi 2169 | . 2 |
3 | eqeltrr.2 | . 2 | |
4 | 2, 3 | eqeltri 2239 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 3eltr3i 2247 p0ex 4167 epse 4320 unex 4419 ordtri2orexmid 4500 onsucsssucexmid 4504 ordsoexmid 4539 ordtri2or2exmid 4548 ontri2orexmidim 4549 nnregexmid 4598 abrexex 6085 opabex3 6090 abrexex2 6092 abexssex 6093 abexex 6094 oprabrexex2 6098 tfr0dm 6290 exmidonfinlem 7149 1lt2pi 7281 prarloclemarch2 7360 prarloclemlt 7434 0cn 7891 resubcli 8161 0reALT 8195 10nn 9337 numsucc 9361 nummac 9366 qreccl 9580 unirnioo 9909 fz0to4untppr 10059 fn0g 12606 sn0topon 12728 retopbas 13163 blssioo 13185 lgslem4 13544 bj-unex 13801 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |