| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 |
|
| eqeltrr.2 |
|
| Ref | Expression |
|---|---|
| eqeltrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 |
. . 3
| |
| 2 | 1 | eqcomi 2200 |
. 2
|
| 3 | eqeltrr.2 |
. 2
| |
| 4 | 2, 3 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr3i 2277 p0ex 4222 epse 4378 unex 4477 ordtri2orexmid 4560 onsucsssucexmid 4564 ordsoexmid 4599 ordtri2or2exmid 4608 ontri2orexmidim 4609 nnregexmid 4658 abrexex 6183 opabex3 6188 abrexex2 6190 abexssex 6191 abexex 6192 oprabrexex2 6196 tfr0dm 6389 exmidonfinlem 7272 1lt2pi 7424 prarloclemarch2 7503 prarloclemlt 7577 0cn 8035 resubcli 8306 0reALT 8340 10nn 9489 numsucc 9513 nummac 9518 qreccl 9733 unirnioo 10065 fz0to4untppr 10216 4sqlem19 12603 dec2dvds 12605 modsubi 12613 gcdi 12614 prdsex 12971 fn0g 13077 fngsum 13090 sn0topon 14408 retopbas 14843 blssioo 14873 hovercncf 14966 lgslem4 15328 bj-unex 15649 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |