![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 |
![]() ![]() ![]() ![]() |
eqeltrr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2197 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrr.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 3eltr3i 2274 p0ex 4218 epse 4374 unex 4473 ordtri2orexmid 4556 onsucsssucexmid 4560 ordsoexmid 4595 ordtri2or2exmid 4604 ontri2orexmidim 4605 nnregexmid 4654 abrexex 6171 opabex3 6176 abrexex2 6178 abexssex 6179 abexex 6180 oprabrexex2 6184 tfr0dm 6377 exmidonfinlem 7255 1lt2pi 7402 prarloclemarch2 7481 prarloclemlt 7555 0cn 8013 resubcli 8284 0reALT 8318 10nn 9466 numsucc 9490 nummac 9495 qreccl 9710 unirnioo 10042 fz0to4untppr 10193 4sqlem19 12550 prdsex 12883 fn0g 12961 fngsum 12974 sn0topon 14267 retopbas 14702 blssioo 14732 hovercncf 14825 lgslem4 15160 bj-unex 15481 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |