| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltrr.1 |
|
| eqeltrr.2 |
|
| Ref | Expression |
|---|---|
| eqeltrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrr.1 |
. . 3
| |
| 2 | 1 | eqcomi 2200 |
. 2
|
| 3 | eqeltrr.2 |
. 2
| |
| 4 | 2, 3 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 3eltr3i 2277 p0ex 4222 epse 4378 unex 4477 ordtri2orexmid 4560 onsucsssucexmid 4564 ordsoexmid 4599 ordtri2or2exmid 4608 ontri2orexmidim 4609 nnregexmid 4658 abrexex 6183 opabex3 6188 abrexex2 6190 abexssex 6191 abexex 6192 oprabrexex2 6196 tfr0dm 6389 exmidonfinlem 7274 1lt2pi 7426 prarloclemarch2 7505 prarloclemlt 7579 0cn 8037 resubcli 8308 0reALT 8342 10nn 9491 numsucc 9515 nummac 9520 qreccl 9735 unirnioo 10067 fz0to4untppr 10218 4sqlem19 12605 dec2dvds 12607 modsubi 12615 gcdi 12616 prdsex 12973 fn0g 13079 fngsum 13092 sn0topon 14432 retopbas 14867 blssioo 14897 hovercncf 14990 lgslem4 15352 bj-unex 15673 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |