![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 |
![]() ![]() ![]() ![]() |
eqeltrr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2104 |
. 2
![]() ![]() ![]() ![]() |
3 | eqeltrr.2 |
. 2
![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqeltri 2172 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-clel 2096 |
This theorem is referenced by: 3eltr3i 2180 p0ex 4052 epse 4202 unex 4300 ordtri2orexmid 4376 onsucsssucexmid 4380 ordsoexmid 4415 ordtri2or2exmid 4424 nnregexmid 4472 abrexex 5946 opabex3 5951 abrexex2 5953 abexssex 5954 abexex 5955 oprabrexex2 5959 tfr0dm 6149 1lt2pi 7049 prarloclemarch2 7128 prarloclemlt 7202 0cn 7630 resubcli 7896 0reALT 7930 10nn 9049 numsucc 9073 nummac 9078 qreccl 9284 unirnioo 9597 sn0topon 12039 retopbas 12445 blssioo 12464 bj-unex 12698 nninffeq 12800 exmidsbthrlem 12801 |
Copyright terms: Public domain | W3C validator |