ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrri Unicode version

Theorem eqeltrri 2244
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqeltrr.1  |-  A  =  B
eqeltrr.2  |-  A  e.  C
Assertion
Ref Expression
eqeltrri  |-  B  e.  C

Proof of Theorem eqeltrri
StepHypRef Expression
1 eqeltrr.1 . . 3  |-  A  =  B
21eqcomi 2174 . 2  |-  B  =  A
3 eqeltrr.2 . 2  |-  A  e.  C
42, 3eqeltri 2243 1  |-  B  e.  C
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  3eltr3i  2251  p0ex  4174  epse  4327  unex  4426  ordtri2orexmid  4507  onsucsssucexmid  4511  ordsoexmid  4546  ordtri2or2exmid  4555  ontri2orexmidim  4556  nnregexmid  4605  abrexex  6096  opabex3  6101  abrexex2  6103  abexssex  6104  abexex  6105  oprabrexex2  6109  tfr0dm  6301  exmidonfinlem  7170  1lt2pi  7302  prarloclemarch2  7381  prarloclemlt  7455  0cn  7912  resubcli  8182  0reALT  8216  10nn  9358  numsucc  9382  nummac  9387  qreccl  9601  unirnioo  9930  fz0to4untppr  10080  fn0g  12629  sn0topon  12882  retopbas  13317  blssioo  13339  lgslem4  13698  bj-unex  13954  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator