ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtri Unicode version

Theorem eleqtri 2280
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtr.1  |-  A  e.  B
eleqtr.2  |-  B  =  C
Assertion
Ref Expression
eleqtri  |-  A  e.  C

Proof of Theorem eleqtri
StepHypRef Expression
1 eleqtr.1 . 2  |-  A  e.  B
2 eleqtr.2 . . 3  |-  B  =  C
32eleq2i 2272 . 2  |-  ( A  e.  B  <->  A  e.  C )
41, 3mpbi 145 1  |-  A  e.  C
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201
This theorem is referenced by:  eleqtrri  2281  3eltr3i  2286  prid2  3740  2eluzge0  9696  fz01or  10233  fz0to4untppr  10246  ef0lem  11971  ege2le3  11982  efgt1p2  12006  efgt1p  12007  phi1  12541  cnrehmeocntop  15082  dvcjbr  15180  fmelpw1o  15742
  Copyright terms: Public domain W3C validator