ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtri Unicode version

Theorem eleqtri 2245
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtr.1  |-  A  e.  B
eleqtr.2  |-  B  =  C
Assertion
Ref Expression
eleqtri  |-  A  e.  C

Proof of Theorem eleqtri
StepHypRef Expression
1 eleqtr.1 . 2  |-  A  e.  B
2 eleqtr.2 . . 3  |-  B  =  C
32eleq2i 2237 . 2  |-  ( A  e.  B  <->  A  e.  C )
41, 3mpbi 144 1  |-  A  e.  C
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  eleqtrri  2246  3eltr3i  2251  prid2  3690  2eluzge0  9534  fz01or  10067  fz0to4untppr  10080  ef0lem  11623  ege2le3  11634  efgt1p2  11658  efgt1p  11659  phi1  12173  cnrehmeocntop  13387  dvcjbr  13466  fmelpw1o  13841
  Copyright terms: Public domain W3C validator