ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtri Unicode version

Theorem eleqtri 2304
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eleqtr.1  |-  A  e.  B
eleqtr.2  |-  B  =  C
Assertion
Ref Expression
eleqtri  |-  A  e.  C

Proof of Theorem eleqtri
StepHypRef Expression
1 eleqtr.1 . 2  |-  A  e.  B
2 eleqtr.2 . . 3  |-  B  =  C
32eleq2i 2296 . 2  |-  ( A  e.  B  <->  A  e.  C )
41, 3mpbi 145 1  |-  A  e.  C
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  eleqtrri  2305  3eltr3i  2310  prid2  3773  fmelpw1o  7432  2eluzge0  9770  fz01or  10307  fz0to4untppr  10320  ef0lem  12171  ege2le3  12182  efgt1p2  12206  efgt1p  12207  phi1  12741  cnrehmeocntop  15284  dvcjbr  15382
  Copyright terms: Public domain W3C validator