![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleqtr.1 |
![]() ![]() ![]() ![]() |
eleqtr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleqtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtr.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eleqtr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eleq2i 2244 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbi 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: eleqtrri 2253 3eltr3i 2258 prid2 3701 2eluzge0 9577 fz01or 10113 fz0to4untppr 10126 ef0lem 11670 ege2le3 11681 efgt1p2 11705 efgt1p 11706 phi1 12221 cnrehmeocntop 14178 dvcjbr 14257 fmelpw1o 14643 |
Copyright terms: Public domain | W3C validator |