ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3i GIF version

Theorem 3eltr3i 2285
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3.1 𝐴𝐵
3eltr3.2 𝐴 = 𝐶
3eltr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3eltr3i 𝐶𝐷

Proof of Theorem 3eltr3i
StepHypRef Expression
1 3eltr3.2 . 2 𝐴 = 𝐶
2 3eltr3.1 . . 3 𝐴𝐵
3 3eltr3.3 . . 3 𝐵 = 𝐷
42, 3eleqtri 2279 . 2 𝐴𝐷
51, 4eqeltrri 2278 1 𝐶𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator