| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsmmulgdi | Unicode version | ||
| Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.) |
| Ref | Expression |
|---|---|
| lmodvsmmulgdi.v |
|
| lmodvsmmulgdi.f |
|
| lmodvsmmulgdi.s |
|
| lmodvsmmulgdi.k |
|
| lmodvsmmulgdi.p |
|
| lmodvsmmulgdi.e |
|
| Ref | Expression |
|---|---|
| lmodvsmmulgdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5964 |
. . . . . . 7
| |
| 2 | oveq1 5964 |
. . . . . . . 8
| |
| 3 | 2 | oveq1d 5972 |
. . . . . . 7
|
| 4 | 1, 3 | eqeq12d 2221 |
. . . . . 6
|
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | oveq1 5964 |
. . . . . . 7
| |
| 7 | oveq1 5964 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5972 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2221 |
. . . . . 6
|
| 10 | 9 | imbi2d 230 |
. . . . 5
|
| 11 | oveq1 5964 |
. . . . . . 7
| |
| 12 | oveq1 5964 |
. . . . . . . 8
| |
| 13 | 12 | oveq1d 5972 |
. . . . . . 7
|
| 14 | 11, 13 | eqeq12d 2221 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | oveq1 5964 |
. . . . . . 7
| |
| 17 | oveq1 5964 |
. . . . . . . 8
| |
| 18 | 17 | oveq1d 5972 |
. . . . . . 7
|
| 19 | 16, 18 | eqeq12d 2221 |
. . . . . 6
|
| 20 | 19 | imbi2d 230 |
. . . . 5
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | simpr 110 |
. . . . . . . 8
| |
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | lmodvsmmulgdi.v |
. . . . . . . 8
| |
| 25 | lmodvsmmulgdi.f |
. . . . . . . 8
| |
| 26 | lmodvsmmulgdi.s |
. . . . . . . 8
| |
| 27 | eqid 2206 |
. . . . . . . 8
| |
| 28 | eqid 2206 |
. . . . . . . 8
| |
| 29 | 24, 25, 26, 27, 28 | lmod0vs 14158 |
. . . . . . 7
|
| 30 | 21, 23, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | simpl 109 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | lmodvsmmulgdi.k |
. . . . . . . . 9
| |
| 34 | lmodvsmmulgdi.e |
. . . . . . . . 9
| |
| 35 | 33, 27, 34 | mulg0 13536 |
. . . . . . . 8
|
| 36 | 32, 35 | syl 14 |
. . . . . . 7
|
| 37 | 36 | oveq1d 5972 |
. . . . . 6
|
| 38 | 24, 25, 26, 33 | lmodvscl 14142 |
. . . . . . . 8
|
| 39 | 21, 32, 23, 38 | syl3anc 1250 |
. . . . . . 7
|
| 40 | lmodvsmmulgdi.p |
. . . . . . . 8
| |
| 41 | 24, 28, 40 | mulg0 13536 |
. . . . . . 7
|
| 42 | 39, 41 | syl 14 |
. . . . . 6
|
| 43 | 30, 37, 42 | 3eqtr4rd 2250 |
. . . . 5
|
| 44 | lmodgrp 14131 |
. . . . . . . . . . . 12
| |
| 45 | 44 | grpmndd 13420 |
. . . . . . . . . . 11
|
| 46 | 45 | ad2antll 491 |
. . . . . . . . . 10
|
| 47 | simpl 109 |
. . . . . . . . . 10
| |
| 48 | 39 | adantl 277 |
. . . . . . . . . 10
|
| 49 | eqid 2206 |
. . . . . . . . . . 11
| |
| 50 | 24, 40, 49 | mulgnn0p1 13544 |
. . . . . . . . . 10
|
| 51 | 46, 47, 48, 50 | syl3anc 1250 |
. . . . . . . . 9
|
| 52 | 51 | adantr 276 |
. . . . . . . 8
|
| 53 | oveq1 5964 |
. . . . . . . . 9
| |
| 54 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 55 | 25 | lmodring 14132 |
. . . . . . . . . . . . . 14
|
| 56 | ringmnd 13843 |
. . . . . . . . . . . . . 14
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . . 13
|
| 58 | 57 | ad2antll 491 |
. . . . . . . . . . . 12
|
| 59 | simprll 537 |
. . . . . . . . . . . 12
| |
| 60 | 33, 34, 58, 47, 59 | mulgnn0cld 13554 |
. . . . . . . . . . 11
|
| 61 | 23 | adantl 277 |
. . . . . . . . . . 11
|
| 62 | eqid 2206 |
. . . . . . . . . . . 12
| |
| 63 | 24, 49, 25, 26, 33, 62 | lmodvsdir 14149 |
. . . . . . . . . . 11
|
| 64 | 54, 60, 59, 61, 63 | syl13anc 1252 |
. . . . . . . . . 10
|
| 65 | 33, 34, 62 | mulgnn0p1 13544 |
. . . . . . . . . . . . 13
|
| 66 | 58, 47, 59, 65 | syl3anc 1250 |
. . . . . . . . . . . 12
|
| 67 | 66 | eqcomd 2212 |
. . . . . . . . . . 11
|
| 68 | 67 | oveq1d 5972 |
. . . . . . . . . 10
|
| 69 | 64, 68 | eqtr3d 2241 |
. . . . . . . . 9
|
| 70 | 53, 69 | sylan9eqr 2261 |
. . . . . . . 8
|
| 71 | 52, 70 | eqtrd 2239 |
. . . . . . 7
|
| 72 | 71 | exp31 364 |
. . . . . 6
|
| 73 | 72 | a2d 26 |
. . . . 5
|
| 74 | 5, 10, 15, 20, 43, 73 | nn0ind 9507 |
. . . 4
|
| 75 | 74 | exp4c 368 |
. . 3
|
| 76 | 75 | 3imp21 1201 |
. 2
|
| 77 | 76 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mulg 13531 df-ring 13835 df-lmod 14126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |