| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsmmulgdi | Unicode version | ||
| Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.) |
| Ref | Expression |
|---|---|
| lmodvsmmulgdi.v |
|
| lmodvsmmulgdi.f |
|
| lmodvsmmulgdi.s |
|
| lmodvsmmulgdi.k |
|
| lmodvsmmulgdi.p |
|
| lmodvsmmulgdi.e |
|
| Ref | Expression |
|---|---|
| lmodvsmmulgdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5941 |
. . . . . . 7
| |
| 2 | oveq1 5941 |
. . . . . . . 8
| |
| 3 | 2 | oveq1d 5949 |
. . . . . . 7
|
| 4 | 1, 3 | eqeq12d 2219 |
. . . . . 6
|
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | oveq1 5941 |
. . . . . . 7
| |
| 7 | oveq1 5941 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 5949 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2219 |
. . . . . 6
|
| 10 | 9 | imbi2d 230 |
. . . . 5
|
| 11 | oveq1 5941 |
. . . . . . 7
| |
| 12 | oveq1 5941 |
. . . . . . . 8
| |
| 13 | 12 | oveq1d 5949 |
. . . . . . 7
|
| 14 | 11, 13 | eqeq12d 2219 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | oveq1 5941 |
. . . . . . 7
| |
| 17 | oveq1 5941 |
. . . . . . . 8
| |
| 18 | 17 | oveq1d 5949 |
. . . . . . 7
|
| 19 | 16, 18 | eqeq12d 2219 |
. . . . . 6
|
| 20 | 19 | imbi2d 230 |
. . . . 5
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | simpr 110 |
. . . . . . . 8
| |
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | lmodvsmmulgdi.v |
. . . . . . . 8
| |
| 25 | lmodvsmmulgdi.f |
. . . . . . . 8
| |
| 26 | lmodvsmmulgdi.s |
. . . . . . . 8
| |
| 27 | eqid 2204 |
. . . . . . . 8
| |
| 28 | eqid 2204 |
. . . . . . . 8
| |
| 29 | 24, 25, 26, 27, 28 | lmod0vs 14001 |
. . . . . . 7
|
| 30 | 21, 23, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | simpl 109 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | lmodvsmmulgdi.k |
. . . . . . . . 9
| |
| 34 | lmodvsmmulgdi.e |
. . . . . . . . 9
| |
| 35 | 33, 27, 34 | mulg0 13379 |
. . . . . . . 8
|
| 36 | 32, 35 | syl 14 |
. . . . . . 7
|
| 37 | 36 | oveq1d 5949 |
. . . . . 6
|
| 38 | 24, 25, 26, 33 | lmodvscl 13985 |
. . . . . . . 8
|
| 39 | 21, 32, 23, 38 | syl3anc 1249 |
. . . . . . 7
|
| 40 | lmodvsmmulgdi.p |
. . . . . . . 8
| |
| 41 | 24, 28, 40 | mulg0 13379 |
. . . . . . 7
|
| 42 | 39, 41 | syl 14 |
. . . . . 6
|
| 43 | 30, 37, 42 | 3eqtr4rd 2248 |
. . . . 5
|
| 44 | lmodgrp 13974 |
. . . . . . . . . . . 12
| |
| 45 | 44 | grpmndd 13263 |
. . . . . . . . . . 11
|
| 46 | 45 | ad2antll 491 |
. . . . . . . . . 10
|
| 47 | simpl 109 |
. . . . . . . . . 10
| |
| 48 | 39 | adantl 277 |
. . . . . . . . . 10
|
| 49 | eqid 2204 |
. . . . . . . . . . 11
| |
| 50 | 24, 40, 49 | mulgnn0p1 13387 |
. . . . . . . . . 10
|
| 51 | 46, 47, 48, 50 | syl3anc 1249 |
. . . . . . . . 9
|
| 52 | 51 | adantr 276 |
. . . . . . . 8
|
| 53 | oveq1 5941 |
. . . . . . . . 9
| |
| 54 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 55 | 25 | lmodring 13975 |
. . . . . . . . . . . . . 14
|
| 56 | ringmnd 13686 |
. . . . . . . . . . . . . 14
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . . 13
|
| 58 | 57 | ad2antll 491 |
. . . . . . . . . . . 12
|
| 59 | simprll 537 |
. . . . . . . . . . . 12
| |
| 60 | 33, 34, 58, 47, 59 | mulgnn0cld 13397 |
. . . . . . . . . . 11
|
| 61 | 23 | adantl 277 |
. . . . . . . . . . 11
|
| 62 | eqid 2204 |
. . . . . . . . . . . 12
| |
| 63 | 24, 49, 25, 26, 33, 62 | lmodvsdir 13992 |
. . . . . . . . . . 11
|
| 64 | 54, 60, 59, 61, 63 | syl13anc 1251 |
. . . . . . . . . 10
|
| 65 | 33, 34, 62 | mulgnn0p1 13387 |
. . . . . . . . . . . . 13
|
| 66 | 58, 47, 59, 65 | syl3anc 1249 |
. . . . . . . . . . . 12
|
| 67 | 66 | eqcomd 2210 |
. . . . . . . . . . 11
|
| 68 | 67 | oveq1d 5949 |
. . . . . . . . . 10
|
| 69 | 64, 68 | eqtr3d 2239 |
. . . . . . . . 9
|
| 70 | 53, 69 | sylan9eqr 2259 |
. . . . . . . 8
|
| 71 | 52, 70 | eqtrd 2237 |
. . . . . . 7
|
| 72 | 71 | exp31 364 |
. . . . . 6
|
| 73 | 72 | a2d 26 |
. . . . 5
|
| 74 | 5, 10, 15, 20, 43, 73 | nn0ind 9469 |
. . . 4
|
| 75 | 74 | exp4c 368 |
. . 3
|
| 76 | 75 | 3imp21 1200 |
. 2
|
| 77 | 76 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-mulr 12842 df-sca 12844 df-vsca 12845 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-mulg 13374 df-ring 13678 df-lmod 13969 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |