| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsmmulgdi | Unicode version | ||
| Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.) |
| Ref | Expression |
|---|---|
| lmodvsmmulgdi.v |
|
| lmodvsmmulgdi.f |
|
| lmodvsmmulgdi.s |
|
| lmodvsmmulgdi.k |
|
| lmodvsmmulgdi.p |
|
| lmodvsmmulgdi.e |
|
| Ref | Expression |
|---|---|
| lmodvsmmulgdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6007 |
. . . . . . 7
| |
| 2 | oveq1 6007 |
. . . . . . . 8
| |
| 3 | 2 | oveq1d 6015 |
. . . . . . 7
|
| 4 | 1, 3 | eqeq12d 2244 |
. . . . . 6
|
| 5 | 4 | imbi2d 230 |
. . . . 5
|
| 6 | oveq1 6007 |
. . . . . . 7
| |
| 7 | oveq1 6007 |
. . . . . . . 8
| |
| 8 | 7 | oveq1d 6015 |
. . . . . . 7
|
| 9 | 6, 8 | eqeq12d 2244 |
. . . . . 6
|
| 10 | 9 | imbi2d 230 |
. . . . 5
|
| 11 | oveq1 6007 |
. . . . . . 7
| |
| 12 | oveq1 6007 |
. . . . . . . 8
| |
| 13 | 12 | oveq1d 6015 |
. . . . . . 7
|
| 14 | 11, 13 | eqeq12d 2244 |
. . . . . 6
|
| 15 | 14 | imbi2d 230 |
. . . . 5
|
| 16 | oveq1 6007 |
. . . . . . 7
| |
| 17 | oveq1 6007 |
. . . . . . . 8
| |
| 18 | 17 | oveq1d 6015 |
. . . . . . 7
|
| 19 | 16, 18 | eqeq12d 2244 |
. . . . . 6
|
| 20 | 19 | imbi2d 230 |
. . . . 5
|
| 21 | simpr 110 |
. . . . . . 7
| |
| 22 | simpr 110 |
. . . . . . . 8
| |
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | lmodvsmmulgdi.v |
. . . . . . . 8
| |
| 25 | lmodvsmmulgdi.f |
. . . . . . . 8
| |
| 26 | lmodvsmmulgdi.s |
. . . . . . . 8
| |
| 27 | eqid 2229 |
. . . . . . . 8
| |
| 28 | eqid 2229 |
. . . . . . . 8
| |
| 29 | 24, 25, 26, 27, 28 | lmod0vs 14279 |
. . . . . . 7
|
| 30 | 21, 23, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | simpl 109 |
. . . . . . . . 9
| |
| 32 | 31 | adantr 276 |
. . . . . . . 8
|
| 33 | lmodvsmmulgdi.k |
. . . . . . . . 9
| |
| 34 | lmodvsmmulgdi.e |
. . . . . . . . 9
| |
| 35 | 33, 27, 34 | mulg0 13657 |
. . . . . . . 8
|
| 36 | 32, 35 | syl 14 |
. . . . . . 7
|
| 37 | 36 | oveq1d 6015 |
. . . . . 6
|
| 38 | 24, 25, 26, 33 | lmodvscl 14263 |
. . . . . . . 8
|
| 39 | 21, 32, 23, 38 | syl3anc 1271 |
. . . . . . 7
|
| 40 | lmodvsmmulgdi.p |
. . . . . . . 8
| |
| 41 | 24, 28, 40 | mulg0 13657 |
. . . . . . 7
|
| 42 | 39, 41 | syl 14 |
. . . . . 6
|
| 43 | 30, 37, 42 | 3eqtr4rd 2273 |
. . . . 5
|
| 44 | lmodgrp 14252 |
. . . . . . . . . . . 12
| |
| 45 | 44 | grpmndd 13541 |
. . . . . . . . . . 11
|
| 46 | 45 | ad2antll 491 |
. . . . . . . . . 10
|
| 47 | simpl 109 |
. . . . . . . . . 10
| |
| 48 | 39 | adantl 277 |
. . . . . . . . . 10
|
| 49 | eqid 2229 |
. . . . . . . . . . 11
| |
| 50 | 24, 40, 49 | mulgnn0p1 13665 |
. . . . . . . . . 10
|
| 51 | 46, 47, 48, 50 | syl3anc 1271 |
. . . . . . . . 9
|
| 52 | 51 | adantr 276 |
. . . . . . . 8
|
| 53 | oveq1 6007 |
. . . . . . . . 9
| |
| 54 | 21 | adantl 277 |
. . . . . . . . . . 11
|
| 55 | 25 | lmodring 14253 |
. . . . . . . . . . . . . 14
|
| 56 | ringmnd 13964 |
. . . . . . . . . . . . . 14
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . . 13
|
| 58 | 57 | ad2antll 491 |
. . . . . . . . . . . 12
|
| 59 | simprll 537 |
. . . . . . . . . . . 12
| |
| 60 | 33, 34, 58, 47, 59 | mulgnn0cld 13675 |
. . . . . . . . . . 11
|
| 61 | 23 | adantl 277 |
. . . . . . . . . . 11
|
| 62 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 63 | 24, 49, 25, 26, 33, 62 | lmodvsdir 14270 |
. . . . . . . . . . 11
|
| 64 | 54, 60, 59, 61, 63 | syl13anc 1273 |
. . . . . . . . . 10
|
| 65 | 33, 34, 62 | mulgnn0p1 13665 |
. . . . . . . . . . . . 13
|
| 66 | 58, 47, 59, 65 | syl3anc 1271 |
. . . . . . . . . . . 12
|
| 67 | 66 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 68 | 67 | oveq1d 6015 |
. . . . . . . . . 10
|
| 69 | 64, 68 | eqtr3d 2264 |
. . . . . . . . 9
|
| 70 | 53, 69 | sylan9eqr 2284 |
. . . . . . . 8
|
| 71 | 52, 70 | eqtrd 2262 |
. . . . . . 7
|
| 72 | 71 | exp31 364 |
. . . . . 6
|
| 73 | 72 | a2d 26 |
. . . . 5
|
| 74 | 5, 10, 15, 20, 43, 73 | nn0ind 9557 |
. . . 4
|
| 75 | 74 | exp4c 368 |
. . 3
|
| 76 | 75 | 3imp21 1222 |
. 2
|
| 77 | 76 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-mulg 13652 df-ring 13956 df-lmod 14247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |