ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsmmulgdi Unicode version

Theorem lmodvsmmulgdi 13413
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v  |-  V  =  ( Base `  W
)
lmodvsmmulgdi.f  |-  F  =  (Scalar `  W )
lmodvsmmulgdi.s  |-  .x.  =  ( .s `  W )
lmodvsmmulgdi.k  |-  K  =  ( Base `  F
)
lmodvsmmulgdi.p  |-  .^  =  (.g
`  W )
lmodvsmmulgdi.e  |-  E  =  (.g `  F )
Assertion
Ref Expression
lmodvsmmulgdi  |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  -> 
( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X ) )

Proof of Theorem lmodvsmmulgdi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5882 . . . . . . 7  |-  ( x  =  0  ->  (
x  .^  ( C  .x.  X ) )  =  ( 0  .^  ( C  .x.  X ) ) )
2 oveq1 5882 . . . . . . . 8  |-  ( x  =  0  ->  (
x E C )  =  ( 0 E C ) )
32oveq1d 5890 . . . . . . 7  |-  ( x  =  0  ->  (
( x E C )  .x.  X )  =  ( ( 0 E C )  .x.  X ) )
41, 3eqeq12d 2192 . . . . . 6  |-  ( x  =  0  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) ) )
54imbi2d 230 . . . . 5  |-  ( x  =  0  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) ) ) )
6 oveq1 5882 . . . . . . 7  |-  ( x  =  y  ->  (
x  .^  ( C  .x.  X ) )  =  ( y  .^  ( C  .x.  X ) ) )
7 oveq1 5882 . . . . . . . 8  |-  ( x  =  y  ->  (
x E C )  =  ( y E C ) )
87oveq1d 5890 . . . . . . 7  |-  ( x  =  y  ->  (
( x E C )  .x.  X )  =  ( ( y E C )  .x.  X ) )
96, 8eqeq12d 2192 . . . . . 6  |-  ( x  =  y  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( y  .^  ( C  .x.  X
) )  =  ( ( y E C )  .x.  X ) ) )
109imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( y  .^  ( C  .x.  X
) )  =  ( ( y E C )  .x.  X ) ) ) )
11 oveq1 5882 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( y  +  1 )  .^  ( C  .x.  X ) ) )
12 oveq1 5882 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x E C )  =  ( ( y  +  1 ) E C ) )
1312oveq1d 5890 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x E C )  .x.  X )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
1411, 13eqeq12d 2192 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) )
1514imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
16 oveq1 5882 . . . . . . 7  |-  ( x  =  N  ->  (
x  .^  ( C  .x.  X ) )  =  ( N  .^  ( C  .x.  X ) ) )
17 oveq1 5882 . . . . . . . 8  |-  ( x  =  N  ->  (
x E C )  =  ( N E C ) )
1817oveq1d 5890 . . . . . . 7  |-  ( x  =  N  ->  (
( x E C )  .x.  X )  =  ( ( N E C )  .x.  X ) )
1916, 18eqeq12d 2192 . . . . . 6  |-  ( x  =  N  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  N  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) ) )
21 simpr 110 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  W  e.  LMod )
22 simpr 110 . . . . . . . 8  |-  ( ( C  e.  K  /\  X  e.  V )  ->  X  e.  V )
2322adantr 276 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  X  e.  V )
24 lmodvsmmulgdi.v . . . . . . . 8  |-  V  =  ( Base `  W
)
25 lmodvsmmulgdi.f . . . . . . . 8  |-  F  =  (Scalar `  W )
26 lmodvsmmulgdi.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
27 eqid 2177 . . . . . . . 8  |-  ( 0g
`  F )  =  ( 0g `  F
)
28 eqid 2177 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
2924, 25, 26, 27, 28lmod0vs 13411 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3021, 23, 29syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( ( 0g `  F )  .x.  X )  =  ( 0g `  W ) )
31 simpl 109 . . . . . . . . 9  |-  ( ( C  e.  K  /\  X  e.  V )  ->  C  e.  K )
3231adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  C  e.  K )
33 lmodvsmmulgdi.k . . . . . . . . 9  |-  K  =  ( Base `  F
)
34 lmodvsmmulgdi.e . . . . . . . . 9  |-  E  =  (.g `  F )
3533, 27, 34mulg0 12988 . . . . . . . 8  |-  ( C  e.  K  ->  (
0 E C )  =  ( 0g `  F ) )
3632, 35syl 14 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 E C )  =  ( 0g `  F
) )
3736oveq1d 5890 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
0 E C ) 
.x.  X )  =  ( ( 0g `  F )  .x.  X
) )
3824, 25, 26, 33lmodvscl 13395 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  C  e.  K  /\  X  e.  V )  ->  ( C  .x.  X )  e.  V )
3921, 32, 23, 38syl3anc 1238 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( C  .x.  X )  e.  V
)
40 lmodvsmmulgdi.p . . . . . . . 8  |-  .^  =  (.g
`  W )
4124, 28, 40mulg0 12988 . . . . . . 7  |-  ( ( C  .x.  X )  e.  V  ->  (
0  .^  ( C  .x.  X ) )  =  ( 0g `  W
) )
4239, 41syl 14 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( 0g `  W
) )
4330, 37, 423eqtr4rd 2221 . . . . 5  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) )
44 lmodgrp 13384 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  W  e. 
Grp )
4544grpmndd 12889 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Mnd )
4645ad2antll 491 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  W  e.  Mnd )
47 simpl 109 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
y  e.  NN0 )
4839adantl 277 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( C  .x.  X
)  e.  V )
49 eqid 2177 . . . . . . . . . . 11  |-  ( +g  `  W )  =  ( +g  `  W )
5024, 40, 49mulgnn0p1 12994 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  y  e.  NN0  /\  ( C  .x.  X )  e.  V )  ->  (
( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y  .^  ( C  .x.  X ) ) ( +g  `  W
) ( C  .x.  X ) ) )
5146, 47, 48, 50syl3anc 1238 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y 
.^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) ) )
5251adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y 
.^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) ) )
53 oveq1 5882 . . . . . . . . 9  |-  ( ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
)  ->  ( (
y  .^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) )  =  ( ( ( y E C )  .x.  X
) ( +g  `  W
) ( C  .x.  X ) ) )
5421adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  W  e.  LMod )
5525lmodring 13385 . . . . . . . . . . . . . 14  |-  ( W  e.  LMod  ->  F  e. 
Ring )
56 ringmnd 13189 . . . . . . . . . . . . . 14  |-  ( F  e.  Ring  ->  F  e. 
Mnd )
5755, 56syl 14 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  F  e. 
Mnd )
5857ad2antll 491 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  F  e.  Mnd )
59 simprll 537 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  C  e.  K )
6033, 34, 58, 47, 59mulgnn0cld 13004 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( y E C )  e.  K )
6123adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  X  e.  V )
62 eqid 2177 . . . . . . . . . . . 12  |-  ( +g  `  F )  =  ( +g  `  F )
6324, 49, 25, 26, 33, 62lmodvsdir 13402 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( y E C )  e.  K  /\  C  e.  K  /\  X  e.  V )
)  ->  ( (
( y E C ) ( +g  `  F
) C )  .x.  X )  =  ( ( ( y E C )  .x.  X
) ( +g  `  W
) ( C  .x.  X ) ) )
6454, 60, 59, 61, 63syl13anc 1240 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C ) ( +g  `  F ) C )  .x.  X
)  =  ( ( ( y E C )  .x.  X ) ( +g  `  W
) ( C  .x.  X ) ) )
6533, 34, 62mulgnn0p1 12994 . . . . . . . . . . . . 13  |-  ( ( F  e.  Mnd  /\  y  e.  NN0  /\  C  e.  K )  ->  (
( y  +  1 ) E C )  =  ( ( y E C ) ( +g  `  F ) C ) )
6658, 47, 59, 65syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y  +  1 ) E C )  =  ( ( y E C ) ( +g  `  F
) C ) )
6766eqcomd 2183 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y E C ) ( +g  `  F ) C )  =  ( ( y  +  1 ) E C ) )
6867oveq1d 5890 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C ) ( +g  `  F ) C )  .x.  X
)  =  ( ( ( y  +  1 ) E C ) 
.x.  X ) )
6964, 68eqtr3d 2212 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C )  .x.  X ) ( +g  `  W ) ( C 
.x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
7053, 69sylan9eqr 2232 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  .^  ( C  .x.  X ) ) ( +g  `  W
) ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) )
7152, 70eqtrd 2210 . . . . . . 7  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
7271exp31 364 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
)  ->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
7372a2d 26 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
) )  ->  (
( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
745, 10, 15, 20, 43, 73nn0ind 9367 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) )
7574exp4c 368 . . 3  |-  ( N  e.  NN0  ->  ( C  e.  K  ->  ( X  e.  V  ->  ( W  e.  LMod  ->  ( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X
) ) ) ) )
76753imp21 1198 . 2  |-  ( ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V )  ->  ( W  e.  LMod  ->  ( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X
) ) )
7776impcom 125 1  |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  -> 
( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814   NN0cn0 9176   Basecbs 12462   +g cplusg 12536  Scalarcsca 12539   .scvsca 12540   0gc0g 12705   Mndcmnd 12817  .gcmg 12983   Ringcrg 13179   LModclmod 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mulr 12550  df-sca 12552  df-vsca 12553  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mulg 12984  df-ring 13181  df-lmod 13379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator