ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsmmulgdi Unicode version

Theorem lmodvsmmulgdi 13600
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v  |-  V  =  ( Base `  W
)
lmodvsmmulgdi.f  |-  F  =  (Scalar `  W )
lmodvsmmulgdi.s  |-  .x.  =  ( .s `  W )
lmodvsmmulgdi.k  |-  K  =  ( Base `  F
)
lmodvsmmulgdi.p  |-  .^  =  (.g
`  W )
lmodvsmmulgdi.e  |-  E  =  (.g `  F )
Assertion
Ref Expression
lmodvsmmulgdi  |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  -> 
( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X ) )

Proof of Theorem lmodvsmmulgdi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5898 . . . . . . 7  |-  ( x  =  0  ->  (
x  .^  ( C  .x.  X ) )  =  ( 0  .^  ( C  .x.  X ) ) )
2 oveq1 5898 . . . . . . . 8  |-  ( x  =  0  ->  (
x E C )  =  ( 0 E C ) )
32oveq1d 5906 . . . . . . 7  |-  ( x  =  0  ->  (
( x E C )  .x.  X )  =  ( ( 0 E C )  .x.  X ) )
41, 3eqeq12d 2204 . . . . . 6  |-  ( x  =  0  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) ) )
54imbi2d 230 . . . . 5  |-  ( x  =  0  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) ) ) )
6 oveq1 5898 . . . . . . 7  |-  ( x  =  y  ->  (
x  .^  ( C  .x.  X ) )  =  ( y  .^  ( C  .x.  X ) ) )
7 oveq1 5898 . . . . . . . 8  |-  ( x  =  y  ->  (
x E C )  =  ( y E C ) )
87oveq1d 5906 . . . . . . 7  |-  ( x  =  y  ->  (
( x E C )  .x.  X )  =  ( ( y E C )  .x.  X ) )
96, 8eqeq12d 2204 . . . . . 6  |-  ( x  =  y  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( y  .^  ( C  .x.  X
) )  =  ( ( y E C )  .x.  X ) ) )
109imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( y  .^  ( C  .x.  X
) )  =  ( ( y E C )  .x.  X ) ) ) )
11 oveq1 5898 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( y  +  1 )  .^  ( C  .x.  X ) ) )
12 oveq1 5898 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  (
x E C )  =  ( ( y  +  1 ) E C ) )
1312oveq1d 5906 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( x E C )  .x.  X )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
1411, 13eqeq12d 2204 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) )
1514imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
16 oveq1 5898 . . . . . . 7  |-  ( x  =  N  ->  (
x  .^  ( C  .x.  X ) )  =  ( N  .^  ( C  .x.  X ) ) )
17 oveq1 5898 . . . . . . . 8  |-  ( x  =  N  ->  (
x E C )  =  ( N E C ) )
1817oveq1d 5906 . . . . . . 7  |-  ( x  =  N  ->  (
( x E C )  .x.  X )  =  ( ( N E C )  .x.  X ) )
1916, 18eqeq12d 2204 . . . . . 6  |-  ( x  =  N  ->  (
( x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X )  <->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  N  ->  (
( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
x  .^  ( C  .x.  X ) )  =  ( ( x E C )  .x.  X
) )  <->  ( (
( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) ) )
21 simpr 110 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  W  e.  LMod )
22 simpr 110 . . . . . . . 8  |-  ( ( C  e.  K  /\  X  e.  V )  ->  X  e.  V )
2322adantr 276 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  X  e.  V )
24 lmodvsmmulgdi.v . . . . . . . 8  |-  V  =  ( Base `  W
)
25 lmodvsmmulgdi.f . . . . . . . 8  |-  F  =  (Scalar `  W )
26 lmodvsmmulgdi.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
27 eqid 2189 . . . . . . . 8  |-  ( 0g
`  F )  =  ( 0g `  F
)
28 eqid 2189 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
2924, 25, 26, 27, 28lmod0vs 13598 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  F
)  .x.  X )  =  ( 0g `  W ) )
3021, 23, 29syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( ( 0g `  F )  .x.  X )  =  ( 0g `  W ) )
31 simpl 109 . . . . . . . . 9  |-  ( ( C  e.  K  /\  X  e.  V )  ->  C  e.  K )
3231adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  C  e.  K )
33 lmodvsmmulgdi.k . . . . . . . . 9  |-  K  =  ( Base `  F
)
34 lmodvsmmulgdi.e . . . . . . . . 9  |-  E  =  (.g `  F )
3533, 27, 34mulg0 13033 . . . . . . . 8  |-  ( C  e.  K  ->  (
0 E C )  =  ( 0g `  F ) )
3632, 35syl 14 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 E C )  =  ( 0g `  F
) )
3736oveq1d 5906 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
0 E C ) 
.x.  X )  =  ( ( 0g `  F )  .x.  X
) )
3824, 25, 26, 33lmodvscl 13582 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  C  e.  K  /\  X  e.  V )  ->  ( C  .x.  X )  e.  V )
3921, 32, 23, 38syl3anc 1249 . . . . . . 7  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( C  .x.  X )  e.  V
)
40 lmodvsmmulgdi.p . . . . . . . 8  |-  .^  =  (.g
`  W )
4124, 28, 40mulg0 13033 . . . . . . 7  |-  ( ( C  .x.  X )  e.  V  ->  (
0  .^  ( C  .x.  X ) )  =  ( 0g `  W
) )
4239, 41syl 14 . . . . . 6  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( 0g `  W
) )
4330, 37, 423eqtr4rd 2233 . . . . 5  |-  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( 0 
.^  ( C  .x.  X ) )  =  ( ( 0 E C )  .x.  X
) )
44 lmodgrp 13571 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  W  e. 
Grp )
4544grpmndd 12924 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Mnd )
4645ad2antll 491 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  W  e.  Mnd )
47 simpl 109 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
y  e.  NN0 )
4839adantl 277 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( C  .x.  X
)  e.  V )
49 eqid 2189 . . . . . . . . . . 11  |-  ( +g  `  W )  =  ( +g  `  W )
5024, 40, 49mulgnn0p1 13039 . . . . . . . . . 10  |-  ( ( W  e.  Mnd  /\  y  e.  NN0  /\  ( C  .x.  X )  e.  V )  ->  (
( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y  .^  ( C  .x.  X ) ) ( +g  `  W
) ( C  .x.  X ) ) )
5146, 47, 48, 50syl3anc 1249 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y 
.^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) ) )
5251adantr 276 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( y 
.^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) ) )
53 oveq1 5898 . . . . . . . . 9  |-  ( ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
)  ->  ( (
y  .^  ( C  .x.  X ) ) ( +g  `  W ) ( C  .x.  X
) )  =  ( ( ( y E C )  .x.  X
) ( +g  `  W
) ( C  .x.  X ) ) )
5421adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  W  e.  LMod )
5525lmodring 13572 . . . . . . . . . . . . . 14  |-  ( W  e.  LMod  ->  F  e. 
Ring )
56 ringmnd 13321 . . . . . . . . . . . . . 14  |-  ( F  e.  Ring  ->  F  e. 
Mnd )
5755, 56syl 14 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  F  e. 
Mnd )
5857ad2antll 491 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  F  e.  Mnd )
59 simprll 537 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  C  e.  K )
6033, 34, 58, 47, 59mulgnn0cld 13049 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( y E C )  e.  K )
6123adantl 277 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  ->  X  e.  V )
62 eqid 2189 . . . . . . . . . . . 12  |-  ( +g  `  F )  =  ( +g  `  F )
6324, 49, 25, 26, 33, 62lmodvsdir 13589 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( y E C )  e.  K  /\  C  e.  K  /\  X  e.  V )
)  ->  ( (
( y E C ) ( +g  `  F
) C )  .x.  X )  =  ( ( ( y E C )  .x.  X
) ( +g  `  W
) ( C  .x.  X ) ) )
6454, 60, 59, 61, 63syl13anc 1251 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C ) ( +g  `  F ) C )  .x.  X
)  =  ( ( ( y E C )  .x.  X ) ( +g  `  W
) ( C  .x.  X ) ) )
6533, 34, 62mulgnn0p1 13039 . . . . . . . . . . . . 13  |-  ( ( F  e.  Mnd  /\  y  e.  NN0  /\  C  e.  K )  ->  (
( y  +  1 ) E C )  =  ( ( y E C ) ( +g  `  F ) C ) )
6658, 47, 59, 65syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y  +  1 ) E C )  =  ( ( y E C ) ( +g  `  F
) C ) )
6766eqcomd 2195 . . . . . . . . . . 11  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( y E C ) ( +g  `  F ) C )  =  ( ( y  +  1 ) E C ) )
6867oveq1d 5906 . . . . . . . . . 10  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C ) ( +g  `  F ) C )  .x.  X
)  =  ( ( ( y  +  1 ) E C ) 
.x.  X ) )
6964, 68eqtr3d 2224 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  -> 
( ( ( y E C )  .x.  X ) ( +g  `  W ) ( C 
.x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
7053, 69sylan9eqr 2244 . . . . . . . 8  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  .^  ( C  .x.  X ) ) ( +g  `  W
) ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) )
7152, 70eqtrd 2222 . . . . . . 7  |-  ( ( ( y  e.  NN0  /\  ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod ) )  /\  ( y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X ) )  -> 
( ( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X ) )
7271exp31 364 . . . . . 6  |-  ( y  e.  NN0  ->  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( (
y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
)  ->  ( (
y  +  1 ) 
.^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
7372a2d 26 . . . . 5  |-  ( y  e.  NN0  ->  ( ( ( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
y  .^  ( C  .x.  X ) )  =  ( ( y E C )  .x.  X
) )  ->  (
( ( C  e.  K  /\  X  e.  V )  /\  W  e.  LMod )  ->  (
( y  +  1 )  .^  ( C  .x.  X ) )  =  ( ( ( y  +  1 ) E C )  .x.  X
) ) ) )
745, 10, 15, 20, 43, 73nn0ind 9385 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( C  e.  K  /\  X  e.  V
)  /\  W  e.  LMod )  ->  ( N  .^  ( C  .x.  X
) )  =  ( ( N E C )  .x.  X ) ) )
7574exp4c 368 . . 3  |-  ( N  e.  NN0  ->  ( C  e.  K  ->  ( X  e.  V  ->  ( W  e.  LMod  ->  ( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X
) ) ) ) )
76753imp21 1200 . 2  |-  ( ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V )  ->  ( W  e.  LMod  ->  ( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X
) ) )
7776impcom 125 1  |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  -> 
( N  .^  ( C  .x.  X ) )  =  ( ( N E C )  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5231  (class class class)co 5891   0cc0 7829   1c1 7830    + caddc 7832   NN0cn0 9194   Basecbs 12480   +g cplusg 12555  Scalarcsca 12558   .scvsca 12559   0gc0g 12727   Mndcmnd 12843  .gcmg 13027   Ringcrg 13311   LModclmod 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-n0 9195  df-z 9272  df-uz 9547  df-seqfrec 10464  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-mulr 12569  df-sca 12571  df-vsca 12572  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-mulg 13028  df-ring 13313  df-lmod 13566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator