| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com13 | Unicode version | ||
| Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 |
|
| Ref | Expression |
|---|---|
| com13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 |
. . 3
| |
| 2 | 1 | com3r 79 |
. 2
|
| 3 | 2 | com23 78 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1199 3imp21 1201 funopg 5324 f1o2ndf1 6337 brecop 6735 fiintim 7054 elpq 9805 xnn0lenn0nn0 10022 elfz0ubfz0 10282 elfz0fzfz0 10283 fz0fzelfz0 10284 fz0fzdiffz0 10287 fzo1fzo0n0 10344 elfzodifsumelfzo 10367 ssfzo12 10390 ssfzo12bi 10391 facwordi 10922 fihashf1rn 10970 swrdswrdlem 11195 swrdswrd 11196 wrd2ind 11214 swrdccatin1 11216 pfxccatin12lem2 11222 swrdccat 11226 reuccatpfxs1lem 11237 oddnn02np1 12306 oddge22np1 12307 evennn02n 12308 evennn2n 12309 dfgcd2 12450 sqrt2irr 12599 lmodfopnelem1 14201 mpomulcn 15153 zabsle1 15591 gausslemma2dlem1a 15650 2lgsoddprm 15705 upgredg2vtx 15852 bj-inf2vnlem2 16106 |
| Copyright terms: Public domain | W3C validator |