| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com13 | Unicode version | ||
| Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 |
|
| Ref | Expression |
|---|---|
| com13 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 |
. . 3
| |
| 2 | 1 | com3r 79 |
. 2
|
| 3 | 2 | com23 78 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1220 3imp21 1222 funopg 5352 f1o2ndf1 6374 brecop 6772 fiintim 7093 elpq 9844 xnn0lenn0nn0 10061 elfz0ubfz0 10321 elfz0fzfz0 10322 fz0fzelfz0 10323 fz0fzdiffz0 10326 fzo1fzo0n0 10383 elfzodifsumelfzo 10407 ssfzo12 10430 ssfzo12bi 10431 facwordi 10962 fihashf1rn 11010 swrdswrdlem 11236 swrdswrd 11237 wrd2ind 11255 swrdccatin1 11257 pfxccatin12lem2 11263 swrdccat 11267 reuccatpfxs1lem 11278 oddnn02np1 12391 oddge22np1 12392 evennn02n 12393 evennn2n 12394 dfgcd2 12535 sqrt2irr 12684 lmodfopnelem1 14288 mpomulcn 15240 zabsle1 15678 gausslemma2dlem1a 15737 2lgsoddprm 15792 upgredg2vtx 15946 usgruspgrben 15984 usgredg2vlem2 16021 uspgr2wlkeq 16076 bj-inf2vnlem2 16334 |
| Copyright terms: Public domain | W3C validator |