Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 |
Ref | Expression |
---|---|
3impb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 | |
2 | 1 | exp32 363 | . 2 |
3 | 2 | 3imp 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3adant1l 1220 3adant1r 1221 3impdi 1283 vtocl3gf 2788 rspc2ev 2844 reuss 3402 trssord 4357 funtp 5240 resdif 5453 funimass4 5536 fnovex 5871 fnotovb 5881 fovrn 5980 fnovrn 5985 fmpoco 6180 nndi 6450 nnaordi 6472 ecovass 6606 ecoviass 6607 ecovdi 6608 ecovidi 6609 eqsupti 6957 addasspig 7267 mulasspig 7269 distrpig 7270 distrnq0 7396 addassnq0 7399 distnq0r 7400 prcdnql 7421 prcunqu 7422 genpassl 7461 genpassu 7462 genpassg 7463 distrlem1prl 7519 distrlem1pru 7520 ltexprlemopl 7538 ltexprlemopu 7540 le2tri3i 8003 cnegexlem1 8069 subadd 8097 addsub 8105 subdi 8279 submul2 8293 div12ap 8586 diveqap1 8597 divnegap 8598 divdivap2 8616 ltmulgt11 8755 gt0div 8761 ge0div 8762 uzind3 9300 fnn0ind 9303 qdivcl 9577 irrmul 9581 xrlttr 9727 fzen 9974 lenegsq 11033 moddvds 11735 dvds2add 11761 dvds2sub 11762 dvdsleabs 11779 divalgb 11858 ndvdsadd 11864 modgcd 11920 absmulgcd 11946 odzval 12169 pcmul 12229 setsresg 12428 unopn 12603 innei 12763 cncfi 13165 |
Copyright terms: Public domain | W3C validator |