| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 |
|
| Ref | Expression |
|---|---|
| 3impb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 |
. . 3
| |
| 2 | 1 | exp32 365 |
. 2
|
| 3 | 2 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant1l 1254 3adant1r 1255 3impdi 1327 vtocl3gf 2864 rspc2ev 2922 reuss 3485 trssord 4471 funtp 5374 resdif 5594 funimass4 5684 fnovex 6034 fnotovb 6047 fovcdm 6148 fnovrn 6153 fmpoco 6362 nndi 6632 nnaordi 6654 ecovass 6791 ecoviass 6792 ecovdi 6793 ecovidi 6794 eqsupti 7163 addasspig 7517 mulasspig 7519 distrpig 7520 distrnq0 7646 addassnq0 7649 distnq0r 7650 prcdnql 7671 prcunqu 7672 genpassl 7711 genpassu 7712 genpassg 7713 distrlem1prl 7769 distrlem1pru 7770 ltexprlemopl 7788 ltexprlemopu 7790 le2tri3i 8255 cnegexlem1 8321 subadd 8349 addsub 8357 subdi 8531 submul2 8545 div12ap 8841 diveqap1 8852 divnegap 8853 divdivap2 8871 ltmulgt11 9011 gt0div 9017 ge0div 9018 uzind3 9560 fnn0ind 9563 qdivcl 9838 irrmul 9842 xrlttr 9991 fzen 10239 ccatval21sw 11140 lswccatn0lsw 11146 swrdwrdsymbg 11196 ccatpfx 11233 ccatopth 11248 lenegsq 11606 moddvds 12310 dvds2add 12336 dvds2sub 12337 dvdsleabs 12356 divalgb 12436 ndvdsadd 12442 modgcd 12512 absmulgcd 12538 odzval 12764 pcmul 12824 setsresg 13070 prdssgrpd 13448 issubmnd 13475 prdsmndd 13481 submcl 13512 grpinvid1 13585 grpinvid2 13586 mulgp1 13692 ghmlin 13785 ghmsub 13788 cmncom 13839 islss3 14343 unopn 14679 innei 14837 cncfi 15252 |
| Copyright terms: Public domain | W3C validator |