| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 |
|
| Ref | Expression |
|---|---|
| 3impb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 |
. . 3
| |
| 2 | 1 | exp32 365 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant1l 1233 3adant1r 1234 3impdi 1306 vtocl3gf 2841 rspc2ev 2899 reuss 3462 trssord 4445 funtp 5346 resdif 5566 funimass4 5652 fnovex 6000 fnotovb 6011 fovcdm 6112 fnovrn 6117 fmpoco 6325 nndi 6595 nnaordi 6617 ecovass 6754 ecoviass 6755 ecovdi 6756 ecovidi 6757 eqsupti 7124 addasspig 7478 mulasspig 7480 distrpig 7481 distrnq0 7607 addassnq0 7610 distnq0r 7611 prcdnql 7632 prcunqu 7633 genpassl 7672 genpassu 7673 genpassg 7674 distrlem1prl 7730 distrlem1pru 7731 ltexprlemopl 7749 ltexprlemopu 7751 le2tri3i 8216 cnegexlem1 8282 subadd 8310 addsub 8318 subdi 8492 submul2 8506 div12ap 8802 diveqap1 8813 divnegap 8814 divdivap2 8832 ltmulgt11 8972 gt0div 8978 ge0div 8979 uzind3 9521 fnn0ind 9524 qdivcl 9799 irrmul 9803 xrlttr 9952 fzen 10200 ccatval21sw 11099 lswccatn0lsw 11105 swrdwrdsymbg 11155 ccatpfx 11192 ccatopth 11207 lenegsq 11521 moddvds 12225 dvds2add 12251 dvds2sub 12252 dvdsleabs 12271 divalgb 12351 ndvdsadd 12357 modgcd 12427 absmulgcd 12453 odzval 12679 pcmul 12739 setsresg 12985 prdssgrpd 13362 issubmnd 13389 prdsmndd 13395 submcl 13426 grpinvid1 13499 grpinvid2 13500 mulgp1 13606 ghmlin 13699 ghmsub 13702 cmncom 13753 islss3 14256 unopn 14592 innei 14750 cncfi 15165 |
| Copyright terms: Public domain | W3C validator |