| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| 3impb.1 | 
 | 
| Ref | Expression | 
|---|---|
| 3impb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impb.1 | 
. . 3
 | |
| 2 | 1 | exp32 365 | 
. 2
 | 
| 3 | 2 | 3imp 1195 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2827 rspc2ev 2883 reuss 3444 trssord 4415 funtp 5311 resdif 5526 funimass4 5611 fnovex 5955 fnotovb 5965 fovcdm 6066 fnovrn 6071 fmpoco 6274 nndi 6544 nnaordi 6566 ecovass 6703 ecoviass 6704 ecovdi 6705 ecovidi 6706 eqsupti 7062 addasspig 7397 mulasspig 7399 distrpig 7400 distrnq0 7526 addassnq0 7529 distnq0r 7530 prcdnql 7551 prcunqu 7552 genpassl 7591 genpassu 7592 genpassg 7593 distrlem1prl 7649 distrlem1pru 7650 ltexprlemopl 7668 ltexprlemopu 7670 le2tri3i 8135 cnegexlem1 8201 subadd 8229 addsub 8237 subdi 8411 submul2 8425 div12ap 8721 diveqap1 8732 divnegap 8733 divdivap2 8751 ltmulgt11 8891 gt0div 8897 ge0div 8898 uzind3 9439 fnn0ind 9442 qdivcl 9717 irrmul 9721 xrlttr 9870 fzen 10118 lenegsq 11260 moddvds 11964 dvds2add 11990 dvds2sub 11991 dvdsleabs 12010 divalgb 12090 ndvdsadd 12096 modgcd 12158 absmulgcd 12184 odzval 12410 pcmul 12470 setsresg 12716 issubmnd 13083 submcl 13111 grpinvid1 13184 grpinvid2 13185 mulgp1 13285 ghmlin 13378 ghmsub 13381 cmncom 13432 islss3 13935 unopn 14241 innei 14399 cncfi 14814 | 
| Copyright terms: Public domain | W3C validator |