| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 |
|
| Ref | Expression |
|---|---|
| 3impb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 |
. . 3
| |
| 2 | 1 | exp32 365 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant1l 1233 3adant1r 1234 3impdi 1306 vtocl3gf 2836 rspc2ev 2892 reuss 3454 trssord 4427 funtp 5327 resdif 5544 funimass4 5629 fnovex 5977 fnotovb 5988 fovcdm 6089 fnovrn 6094 fmpoco 6302 nndi 6572 nnaordi 6594 ecovass 6731 ecoviass 6732 ecovdi 6733 ecovidi 6734 eqsupti 7098 addasspig 7443 mulasspig 7445 distrpig 7446 distrnq0 7572 addassnq0 7575 distnq0r 7576 prcdnql 7597 prcunqu 7598 genpassl 7637 genpassu 7638 genpassg 7639 distrlem1prl 7695 distrlem1pru 7696 ltexprlemopl 7714 ltexprlemopu 7716 le2tri3i 8181 cnegexlem1 8247 subadd 8275 addsub 8283 subdi 8457 submul2 8471 div12ap 8767 diveqap1 8778 divnegap 8779 divdivap2 8797 ltmulgt11 8937 gt0div 8943 ge0div 8944 uzind3 9486 fnn0ind 9489 qdivcl 9764 irrmul 9768 xrlttr 9917 fzen 10165 ccatval21sw 11061 lswccatn0lsw 11067 swrdwrdsymbg 11117 lenegsq 11406 moddvds 12110 dvds2add 12136 dvds2sub 12137 dvdsleabs 12156 divalgb 12236 ndvdsadd 12242 modgcd 12312 absmulgcd 12338 odzval 12564 pcmul 12624 setsresg 12870 prdssgrpd 13247 issubmnd 13274 prdsmndd 13280 submcl 13311 grpinvid1 13384 grpinvid2 13385 mulgp1 13491 ghmlin 13584 ghmsub 13587 cmncom 13638 islss3 14141 unopn 14477 innei 14635 cncfi 15050 |
| Copyright terms: Public domain | W3C validator |