| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 |
|
| Ref | Expression |
|---|---|
| 3impb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 |
. . 3
| |
| 2 | 1 | exp32 365 |
. 2
|
| 3 | 2 | 3imp 1195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3adant1l 1232 3adant1r 1233 3impdi 1304 vtocl3gf 2827 rspc2ev 2883 reuss 3445 trssord 4416 funtp 5312 resdif 5529 funimass4 5614 fnovex 5958 fnotovb 5969 fovcdm 6070 fnovrn 6075 fmpoco 6283 nndi 6553 nnaordi 6575 ecovass 6712 ecoviass 6713 ecovdi 6714 ecovidi 6715 eqsupti 7071 addasspig 7414 mulasspig 7416 distrpig 7417 distrnq0 7543 addassnq0 7546 distnq0r 7547 prcdnql 7568 prcunqu 7569 genpassl 7608 genpassu 7609 genpassg 7610 distrlem1prl 7666 distrlem1pru 7667 ltexprlemopl 7685 ltexprlemopu 7687 le2tri3i 8152 cnegexlem1 8218 subadd 8246 addsub 8254 subdi 8428 submul2 8442 div12ap 8738 diveqap1 8749 divnegap 8750 divdivap2 8768 ltmulgt11 8908 gt0div 8914 ge0div 8915 uzind3 9456 fnn0ind 9459 qdivcl 9734 irrmul 9738 xrlttr 9887 fzen 10135 lenegsq 11277 moddvds 11981 dvds2add 12007 dvds2sub 12008 dvdsleabs 12027 divalgb 12107 ndvdsadd 12113 modgcd 12183 absmulgcd 12209 odzval 12435 pcmul 12495 setsresg 12741 prdssgrpd 13117 issubmnd 13144 prdsmndd 13150 submcl 13181 grpinvid1 13254 grpinvid2 13255 mulgp1 13361 ghmlin 13454 ghmsub 13457 cmncom 13508 islss3 14011 unopn 14325 innei 14483 cncfi 14898 |
| Copyright terms: Public domain | W3C validator |