| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impb | Unicode version | ||
| Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impb.1 |
|
| Ref | Expression |
|---|---|
| 3impb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impb.1 |
. . 3
| |
| 2 | 1 | exp32 365 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant1l 1233 3adant1r 1234 3impdi 1306 vtocl3gf 2836 rspc2ev 2892 reuss 3454 trssord 4428 funtp 5328 resdif 5546 funimass4 5631 fnovex 5979 fnotovb 5990 fovcdm 6091 fnovrn 6096 fmpoco 6304 nndi 6574 nnaordi 6596 ecovass 6733 ecoviass 6734 ecovdi 6735 ecovidi 6736 eqsupti 7100 addasspig 7445 mulasspig 7447 distrpig 7448 distrnq0 7574 addassnq0 7577 distnq0r 7578 prcdnql 7599 prcunqu 7600 genpassl 7639 genpassu 7640 genpassg 7641 distrlem1prl 7697 distrlem1pru 7698 ltexprlemopl 7716 ltexprlemopu 7718 le2tri3i 8183 cnegexlem1 8249 subadd 8277 addsub 8285 subdi 8459 submul2 8473 div12ap 8769 diveqap1 8780 divnegap 8781 divdivap2 8799 ltmulgt11 8939 gt0div 8945 ge0div 8946 uzind3 9488 fnn0ind 9491 qdivcl 9766 irrmul 9770 xrlttr 9919 fzen 10167 ccatval21sw 11064 lswccatn0lsw 11070 swrdwrdsymbg 11120 ccatpfx 11155 lenegsq 11439 moddvds 12143 dvds2add 12169 dvds2sub 12170 dvdsleabs 12189 divalgb 12269 ndvdsadd 12275 modgcd 12345 absmulgcd 12371 odzval 12597 pcmul 12657 setsresg 12903 prdssgrpd 13280 issubmnd 13307 prdsmndd 13313 submcl 13344 grpinvid1 13417 grpinvid2 13418 mulgp1 13524 ghmlin 13617 ghmsub 13620 cmncom 13671 islss3 14174 unopn 14510 innei 14668 cncfi 15083 |
| Copyright terms: Public domain | W3C validator |