| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | Unicode version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 988 |
. 2
| |
| 2 | 3exp.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2l 1235 3adant2r 1236 brelrng 4909 iotam 5263 funimaexglem 5357 fvun2 5646 nnaordi 6594 nnmword 6604 fpmg 6761 prcdnql 7597 prcunqu 7598 prarloc 7616 ltaprg 7732 mul12 8201 add12 8230 addsub 8283 addsubeq4 8287 ppncan 8314 leadd1 8503 ltaddsub2 8510 leaddsub2 8512 lemul1 8666 reapmul1lem 8667 reapadd1 8669 reapcotr 8671 remulext1 8672 div23ap 8764 ltmulgt11 8937 lediv1 8942 lemuldiv 8954 zdiv 9461 iooneg 10110 icoshft 10112 fzaddel 10181 fzshftral 10230 facwordi 10885 abssubge0 11413 climshftlemg 11613 dvdsmul1 12124 divalgb 12236 lcmgcdeq 12405 pcfac 12673 mhmmulg 13499 rmodislmodlem 14112 cnmptcom 14770 hmeof1o2 14780 |
| Copyright terms: Public domain | W3C validator |