| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3com12 | Unicode version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) | 
| Ref | Expression | 
|---|---|
| 3exp.1 | 
 | 
| Ref | Expression | 
|---|---|
| 3com12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3ancoma 987 | 
. 2
 | |
| 2 | 3exp.1 | 
. 2
 | |
| 3 | 1, 2 | sylbi 121 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3adant2l 1234 3adant2r 1235 brelrng 4897 iotam 5250 funimaexglem 5341 fvun2 5628 nnaordi 6566 nnmword 6576 fpmg 6733 prcdnql 7551 prcunqu 7552 prarloc 7570 ltaprg 7686 mul12 8155 add12 8184 addsub 8237 addsubeq4 8241 ppncan 8268 leadd1 8457 ltaddsub2 8464 leaddsub2 8466 lemul1 8620 reapmul1lem 8621 reapadd1 8623 reapcotr 8625 remulext1 8626 div23ap 8718 ltmulgt11 8891 lediv1 8896 lemuldiv 8908 zdiv 9414 iooneg 10063 icoshft 10065 fzaddel 10134 fzshftral 10183 facwordi 10832 abssubge0 11267 climshftlemg 11467 dvdsmul1 11978 divalgb 12090 lcmgcdeq 12251 pcfac 12519 mhmmulg 13293 rmodislmodlem 13906 cnmptcom 14534 hmeof1o2 14544 | 
| Copyright terms: Public domain | W3C validator |