| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | Unicode version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 988 |
. 2
| |
| 2 | 3exp.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2l 1235 3adant2r 1236 brelrng 4910 iotam 5264 funimaexglem 5358 fvun2 5648 nnaordi 6596 nnmword 6606 fpmg 6763 prcdnql 7599 prcunqu 7600 prarloc 7618 ltaprg 7734 mul12 8203 add12 8232 addsub 8285 addsubeq4 8289 ppncan 8316 leadd1 8505 ltaddsub2 8512 leaddsub2 8514 lemul1 8668 reapmul1lem 8669 reapadd1 8671 reapcotr 8673 remulext1 8674 div23ap 8766 ltmulgt11 8939 lediv1 8944 lemuldiv 8956 zdiv 9463 iooneg 10112 icoshft 10114 fzaddel 10183 fzshftral 10232 facwordi 10887 pfxeq 11150 abssubge0 11446 climshftlemg 11646 dvdsmul1 12157 divalgb 12269 lcmgcdeq 12438 pcfac 12706 mhmmulg 13532 rmodislmodlem 14145 cnmptcom 14803 hmeof1o2 14813 |
| Copyright terms: Public domain | W3C validator |