| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | Unicode version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 988 |
. 2
| |
| 2 | 3exp.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3adant2l 1235 3adant2r 1236 brelrng 4928 iotam 5282 funimaexglem 5376 fvun2 5669 nnaordi 6617 nnmword 6627 fpmg 6784 prcdnql 7632 prcunqu 7633 prarloc 7651 ltaprg 7767 mul12 8236 add12 8265 addsub 8318 addsubeq4 8322 ppncan 8349 leadd1 8538 ltaddsub2 8545 leaddsub2 8547 lemul1 8701 reapmul1lem 8702 reapadd1 8704 reapcotr 8706 remulext1 8707 div23ap 8799 ltmulgt11 8972 lediv1 8977 lemuldiv 8989 zdiv 9496 iooneg 10145 icoshft 10147 fzaddel 10216 fzshftral 10265 facwordi 10922 pfxeq 11187 abssubge0 11528 climshftlemg 11728 dvdsmul1 12239 divalgb 12351 lcmgcdeq 12520 pcfac 12788 mhmmulg 13614 rmodislmodlem 14227 cnmptcom 14885 hmeof1o2 14895 |
| Copyright terms: Public domain | W3C validator |