| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3com12 | Unicode version | ||
| Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3com12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1009 |
. 2
| |
| 2 | 3exp.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3adant2l 1256 3adant2r 1257 brelrng 4955 iotam 5310 funimaexglem 5404 fvun2 5701 nnaordi 6654 nnmword 6664 fpmg 6821 prcdnql 7671 prcunqu 7672 prarloc 7690 ltaprg 7806 mul12 8275 add12 8304 addsub 8357 addsubeq4 8361 ppncan 8388 leadd1 8577 ltaddsub2 8584 leaddsub2 8586 lemul1 8740 reapmul1lem 8741 reapadd1 8743 reapcotr 8745 remulext1 8746 div23ap 8838 ltmulgt11 9011 lediv1 9016 lemuldiv 9028 zdiv 9535 iooneg 10184 icoshft 10186 fzaddel 10255 fzshftral 10304 facwordi 10962 pfxeq 11228 abssubge0 11613 climshftlemg 11813 dvdsmul1 12324 divalgb 12436 lcmgcdeq 12605 pcfac 12873 mhmmulg 13700 rmodislmodlem 14314 cnmptcom 14972 hmeof1o2 14982 |
| Copyright terms: Public domain | W3C validator |