Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccid | Unicode version |
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
Ref | Expression |
---|---|
iccid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 9881 | . . . 4 | |
2 | 1 | anidms 395 | . . 3 |
3 | xrlenlt 7984 | . . . . . . . 8 | |
4 | xrlenlt 7984 | . . . . . . . . . . 11 | |
5 | 4 | ancoms 266 | . . . . . . . . . 10 |
6 | xrlttri3 9754 | . . . . . . . . . . . . 13 | |
7 | 6 | biimprd 157 | . . . . . . . . . . . 12 |
8 | 7 | ancoms 266 | . . . . . . . . . . 11 |
9 | 8 | expcomd 1434 | . . . . . . . . . 10 |
10 | 5, 9 | sylbid 149 | . . . . . . . . 9 |
11 | 10 | com23 78 | . . . . . . . 8 |
12 | 3, 11 | sylbid 149 | . . . . . . 7 |
13 | 12 | ex 114 | . . . . . 6 |
14 | 13 | 3impd 1216 | . . . . 5 |
15 | eleq1a 2242 | . . . . . 6 | |
16 | xrleid 9757 | . . . . . . 7 | |
17 | breq2 3993 | . . . . . . 7 | |
18 | 16, 17 | syl5ibrcom 156 | . . . . . 6 |
19 | breq1 3992 | . . . . . . 7 | |
20 | 16, 19 | syl5ibrcom 156 | . . . . . 6 |
21 | 15, 18, 20 | 3jcad 1173 | . . . . 5 |
22 | 14, 21 | impbid 128 | . . . 4 |
23 | velsn 3600 | . . . 4 | |
24 | 22, 23 | bitr4di 197 | . . 3 |
25 | 2, 24 | bitrd 187 | . 2 |
26 | 25 | eqrdv 2168 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 csn 3583 class class class wbr 3989 (class class class)co 5853 cxr 7953 clt 7954 cle 7955 cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-icc 9852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |