ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid Unicode version

Theorem iccid 10121
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )

Proof of Theorem iccid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elicc1 10120 . . . 4  |-  ( ( A  e.  RR*  /\  A  e.  RR* )  ->  (
x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
21anidms 397 . . 3  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
3 xrlenlt 8211 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  <->  -.  x  <  A ) )
4 xrlenlt 8211 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
54ancoms 268 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
6 xrlttri3 9993 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  =  A  <->  ( -.  x  <  A  /\  -.  A  <  x ) ) )
76biimprd 158 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
87ancoms 268 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
98expcomd 1484 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  A  <  x  -> 
( -.  x  < 
A  ->  x  =  A ) ) )
105, 9sylbid 150 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  ->  ( -.  x  <  A  ->  x  =  A ) ) )
1110com23 78 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  x  <  A  -> 
( x  <_  A  ->  x  =  A ) ) )
123, 11sylbid 150 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) )
1312ex 115 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  e.  RR*  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) ) )
14133impd 1245 . . . . 5  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  ->  x  =  A ) )
15 eleq1a 2301 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  e.  RR* ) )
16 xrleid 9996 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_  A )
17 breq2 4087 . . . . . . 7  |-  ( x  =  A  ->  ( A  <_  x  <->  A  <_  A ) )
1816, 17syl5ibrcom 157 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  A  <_  x ) )
19 breq1 4086 . . . . . . 7  |-  ( x  =  A  ->  (
x  <_  A  <->  A  <_  A ) )
2016, 19syl5ibrcom 157 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  <_  A ) )
2115, 18, 203jcad 1202 . . . . 5  |-  ( A  e.  RR*  ->  ( x  =  A  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  A ) ) )
2214, 21impbid 129 . . . 4  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  =  A ) )
23 velsn 3683 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
2422, 23bitr4di 198 . . 3  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  e.  { A } ) )
252, 24bitrd 188 . 2  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  x  e.  { A } ) )
2625eqrdv 2227 1  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {csn 3666   class class class wbr 4083  (class class class)co 6001   RR*cxr 8180    < clt 8181    <_ cle 8182   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-apti 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-icc 10091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator