| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iccid | Unicode version | ||
| Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.) |
| Ref | Expression |
|---|---|
| iccid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 10120 |
. . . 4
| |
| 2 | 1 | anidms 397 |
. . 3
|
| 3 | xrlenlt 8211 |
. . . . . . . 8
| |
| 4 | xrlenlt 8211 |
. . . . . . . . . . 11
| |
| 5 | 4 | ancoms 268 |
. . . . . . . . . 10
|
| 6 | xrlttri3 9993 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | biimprd 158 |
. . . . . . . . . . . 12
|
| 8 | 7 | ancoms 268 |
. . . . . . . . . . 11
|
| 9 | 8 | expcomd 1484 |
. . . . . . . . . 10
|
| 10 | 5, 9 | sylbid 150 |
. . . . . . . . 9
|
| 11 | 10 | com23 78 |
. . . . . . . 8
|
| 12 | 3, 11 | sylbid 150 |
. . . . . . 7
|
| 13 | 12 | ex 115 |
. . . . . 6
|
| 14 | 13 | 3impd 1245 |
. . . . 5
|
| 15 | eleq1a 2301 |
. . . . . 6
| |
| 16 | xrleid 9996 |
. . . . . . 7
| |
| 17 | breq2 4087 |
. . . . . . 7
| |
| 18 | 16, 17 | syl5ibrcom 157 |
. . . . . 6
|
| 19 | breq1 4086 |
. . . . . . 7
| |
| 20 | 16, 19 | syl5ibrcom 157 |
. . . . . 6
|
| 21 | 15, 18, 20 | 3jcad 1202 |
. . . . 5
|
| 22 | 14, 21 | impbid 129 |
. . . 4
|
| 23 | velsn 3683 |
. . . 4
| |
| 24 | 22, 23 | bitr4di 198 |
. . 3
|
| 25 | 2, 24 | bitrd 188 |
. 2
|
| 26 | 25 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-icc 10091 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |