ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid Unicode version

Theorem iccid 9991
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )

Proof of Theorem iccid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elicc1 9990 . . . 4  |-  ( ( A  e.  RR*  /\  A  e.  RR* )  ->  (
x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
21anidms 397 . . 3  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A
) ) )
3 xrlenlt 8084 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  <->  -.  x  <  A ) )
4 xrlenlt 8084 . . . . . . . . . . 11  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
54ancoms 268 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  <->  -.  A  <  x ) )
6 xrlttri3 9863 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
x  =  A  <->  ( -.  x  <  A  /\  -.  A  <  x ) ) )
76biimprd 158 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  A  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
87ancoms 268 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
( -.  x  < 
A  /\  -.  A  <  x )  ->  x  =  A ) )
98expcomd 1452 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  A  <  x  -> 
( -.  x  < 
A  ->  x  =  A ) ) )
105, 9sylbid 150 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  (
x  <_  A  ->  ( -.  x  <  A  ->  x  =  A ) ) )
1110com23 78 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( -.  x  <  A  -> 
( x  <_  A  ->  x  =  A ) ) )
123, 11sylbid 150 . . . . . . 7  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) )
1312ex 115 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  e.  RR*  ->  ( A  <_  x  ->  (
x  <_  A  ->  x  =  A ) ) ) )
14133impd 1223 . . . . 5  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  ->  x  =  A ) )
15 eleq1a 2265 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  e.  RR* ) )
16 xrleid 9866 . . . . . . 7  |-  ( A  e.  RR*  ->  A  <_  A )
17 breq2 4033 . . . . . . 7  |-  ( x  =  A  ->  ( A  <_  x  <->  A  <_  A ) )
1816, 17syl5ibrcom 157 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  A  <_  x ) )
19 breq1 4032 . . . . . . 7  |-  ( x  =  A  ->  (
x  <_  A  <->  A  <_  A ) )
2016, 19syl5ibrcom 157 . . . . . 6  |-  ( A  e.  RR*  ->  ( x  =  A  ->  x  <_  A ) )
2115, 18, 203jcad 1180 . . . . 5  |-  ( A  e.  RR*  ->  ( x  =  A  ->  (
x  e.  RR*  /\  A  <_  x  /\  x  <_  A ) ) )
2214, 21impbid 129 . . . 4  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  =  A ) )
23 velsn 3635 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
2422, 23bitr4di 198 . . 3  |-  ( A  e.  RR*  ->  ( ( x  e.  RR*  /\  A  <_  x  /\  x  <_  A )  <->  x  e.  { A } ) )
252, 24bitrd 188 . 2  |-  ( A  e.  RR*  ->  ( x  e.  ( A [,] A )  <->  x  e.  { A } ) )
2625eqrdv 2191 1  |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {csn 3618   class class class wbr 4029  (class class class)co 5918   RR*cxr 8053    < clt 8054    <_ cle 8055   [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator