ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodprop2d Unicode version

Theorem lmodprop2d 13904
Description: If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13905 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodprop2d.b1  |-  ( ph  ->  B  =  ( Base `  K ) )
lmodprop2d.b2  |-  ( ph  ->  B  =  ( Base `  L ) )
lmodprop2d.f  |-  F  =  (Scalar `  K )
lmodprop2d.g  |-  G  =  (Scalar `  L )
lmodprop2d.p1  |-  ( ph  ->  P  =  ( Base `  F ) )
lmodprop2d.p2  |-  ( ph  ->  P  =  ( Base `  G ) )
lmodprop2d.1  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lmodprop2d.2  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  F ) y )  =  ( x ( +g  `  G ) y ) )
lmodprop2d.3  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  F ) y )  =  ( x ( .r `  G
) y ) )
lmodprop2d.4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
Assertion
Ref Expression
lmodprop2d  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Distinct variable groups:    x, y, B   
x, F, y    ph, x, y    x, G, y    x, K, y    x, L, y   
x, P, y

Proof of Theorem lmodprop2d
Dummy variables  r  q  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodgrp 13850 . . . 4  |-  ( K  e.  LMod  ->  K  e. 
Grp )
21a1i 9 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  K  e.  Grp )
)
3 eqid 2196 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
4 eqid 2196 . . . . . 6  |-  ( +g  `  K )  =  ( +g  `  K )
5 eqid 2196 . . . . . 6  |-  ( .s
`  K )  =  ( .s `  K
)
6 lmodprop2d.f . . . . . 6  |-  F  =  (Scalar `  K )
7 eqid 2196 . . . . . 6  |-  ( Base `  F )  =  (
Base `  F )
8 eqid 2196 . . . . . 6  |-  ( +g  `  F )  =  ( +g  `  F )
9 eqid 2196 . . . . . 6  |-  ( .r
`  F )  =  ( .r `  F
)
10 eqid 2196 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
113, 4, 5, 6, 7, 8, 9, 10islmod 13847 . . . . 5  |-  ( K  e.  LMod  <->  ( K  e. 
Grp  /\  F  e.  Ring  /\  A. q  e.  (
Base `  F ) A. r  e.  ( Base `  F ) A. z  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
1211simp2bi 1015 . . . 4  |-  ( K  e.  LMod  ->  F  e. 
Ring )
1312a1i 9 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  F  e.  Ring ) )
14 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  K  e.  LMod )
15 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  P )
16 lmodprop2d.p1 . . . . . . . . 9  |-  ( ph  ->  P  =  ( Base `  F ) )
1716ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  P  =  ( Base `  F )
)
1815, 17eleqtrd 2275 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  ( Base `  F )
)
19 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  B )
20 lmodprop2d.b1 . . . . . . . . 9  |-  ( ph  ->  B  =  ( Base `  K ) )
2120ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  B  =  ( Base `  K )
)
2219, 21eleqtrd 2275 . . . . . . 7  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  ( Base `  K )
)
233, 6, 5, 7lmodvscl 13861 . . . . . . 7  |-  ( ( K  e.  LMod  /\  x  e.  ( Base `  F
)  /\  y  e.  ( Base `  K )
)  ->  ( x
( .s `  K
) y )  e.  ( Base `  K
) )
2414, 18, 22, 23syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  ( Base `  K
) )
2524, 21eleqtrrd 2276 . . . . 5  |-  ( ( ( ph  /\  K  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  B )
2625ralrimivva 2579 . . . 4  |-  ( (
ph  /\  K  e.  LMod )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
2726ex 115 . . 3  |-  ( ph  ->  ( K  e.  LMod  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B ) )
282, 13, 273jcad 1180 . 2  |-  ( ph  ->  ( K  e.  LMod  -> 
( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) ) )
29 lmodgrp 13850 . . . 4  |-  ( L  e.  LMod  ->  L  e. 
Grp )
30 lmodprop2d.b2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31 lmodprop2d.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
3220, 30, 31grppropd 13149 . . . 4  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
3329, 32imbitrrid 156 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  K  e.  Grp )
)
34 eqid 2196 . . . . . 6  |-  ( Base `  L )  =  (
Base `  L )
35 eqid 2196 . . . . . 6  |-  ( +g  `  L )  =  ( +g  `  L )
36 eqid 2196 . . . . . 6  |-  ( .s
`  L )  =  ( .s `  L
)
37 lmodprop2d.g . . . . . 6  |-  G  =  (Scalar `  L )
38 eqid 2196 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
39 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
40 eqid 2196 . . . . . 6  |-  ( .r
`  G )  =  ( .r `  G
)
41 eqid 2196 . . . . . 6  |-  ( 1r
`  G )  =  ( 1r `  G
)
4234, 35, 36, 37, 38, 39, 40, 41islmod 13847 . . . . 5  |-  ( L  e.  LMod  <->  ( L  e. 
Grp  /\  G  e.  Ring  /\  A. q  e.  (
Base `  G ) A. r  e.  ( Base `  G ) A. z  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
4342simp2bi 1015 . . . 4  |-  ( L  e.  LMod  ->  G  e. 
Ring )
44 lmodprop2d.p2 . . . . 5  |-  ( ph  ->  P  =  ( Base `  G ) )
45 lmodprop2d.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  F ) y )  =  ( x ( +g  `  G ) y ) )
46 lmodprop2d.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .r
`  F ) y )  =  ( x ( .r `  G
) y ) )
4716, 44, 45, 46ringpropd 13594 . . . 4  |-  ( ph  ->  ( F  e.  Ring  <->  G  e.  Ring ) )
4843, 47imbitrrid 156 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  F  e.  Ring ) )
49 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  L  e.  LMod )
50 simprl 529 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  P )
5144ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  P  =  ( Base `  G )
)
5250, 51eleqtrd 2275 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  x  e.  ( Base `  G )
)
53 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  B )
5430ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  B  =  ( Base `  L )
)
5553, 54eleqtrd 2275 . . . . . . 7  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  y  e.  ( Base `  L )
)
5634, 37, 36, 38lmodvscl 13861 . . . . . . 7  |-  ( ( L  e.  LMod  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  L )
)  ->  ( x
( .s `  L
) y )  e.  ( Base `  L
) )
5749, 52, 55, 56syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  L
) y )  e.  ( Base `  L
) )
58 lmodprop2d.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
5958adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  =  ( x ( .s
`  L ) y ) )
6057, 59, 543eltr4d 2280 . . . . 5  |-  ( ( ( ph  /\  L  e.  LMod )  /\  (
x  e.  P  /\  y  e.  B )
)  ->  ( x
( .s `  K
) y )  e.  B )
6160ralrimivva 2579 . . . 4  |-  ( (
ph  /\  L  e.  LMod )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
6261ex 115 . . 3  |-  ( ph  ->  ( L  e.  LMod  ->  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B ) )
6333, 48, 623jcad 1180 . 2  |-  ( ph  ->  ( L  e.  LMod  -> 
( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) ) )
6432adantr 276 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
6547adantr 276 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( F  e.  Ring  <->  G  e.  Ring ) )
66 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ph )
67 simprlr 538 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  r  e.  P )
68 simprrr 540 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  w  e.  B )
6958oveqrspc2v 5949 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  P  /\  w  e.  B ) )  -> 
( r ( .s
`  K ) w )  =  ( r ( .s `  L
) w ) )
7066, 67, 68, 69syl12anc 1247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) w )  =  ( r ( .s `  L ) w ) )
7170eleq1d 2265 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w )  e.  B  <->  ( r
( .s `  L
) w )  e.  B ) )
72 simplr1 1041 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  K  e.  Grp )
7320ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  B  =  ( Base `  K
) )
7468, 73eleqtrd 2275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  w  e.  ( Base `  K
) )
75 simprrl 539 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  z  e.  B )
7675, 73eleqtrd 2275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  z  e.  ( Base `  K
) )
773, 4, 72, 74, 76grpcld 13146 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  e.  ( Base `  K
) )
7877, 73eleqtrrd 2276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  e.  B )
7958oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  P  /\  (
w ( +g  `  K
) z )  e.  B ) )  -> 
( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  K ) z ) ) )
8066, 67, 78, 79syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  K ) z ) ) )
8131oveqrspc2v 5949 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  B  /\  z  e.  B ) )  -> 
( w ( +g  `  K ) z )  =  ( w ( +g  `  L ) z ) )
8266, 68, 75, 81syl12anc 1247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
w ( +g  `  K
) z )  =  ( w ( +g  `  L ) z ) )
8382oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  L ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  L ) z ) ) )
8480, 83eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( r ( .s `  L ) ( w ( +g  `  L ) z ) ) )
85 simplr3 1043 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )
86 ovrspc2v 5948 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  P  /\  w  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
r ( .s `  K ) w )  e.  B )
8767, 68, 85, 86syl21anc 1248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) w )  e.  B )
88 ovrspc2v 5948 . . . . . . . . . . . . . . 15  |-  ( ( ( r  e.  P  /\  z  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
r ( .s `  K ) z )  e.  B )
8967, 75, 85, 88syl21anc 1248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) z )  e.  B )
9031oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
r ( .s `  K ) w )  e.  B  /\  (
r ( .s `  K ) z )  e.  B ) )  ->  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  =  ( ( r ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) z ) ) )
9166, 87, 89, 90syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  L ) ( r ( .s `  K
) z ) ) )
9258oveqrspc2v 5949 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  P  /\  z  e.  B ) )  -> 
( r ( .s
`  K ) z )  =  ( r ( .s `  L
) z ) )
9366, 67, 75, 92syl12anc 1247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
r ( .s `  K ) z )  =  ( r ( .s `  L ) z ) )
9470, 93oveq12d 5940 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) )
9591, 94eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) )
9684, 95eqeq12d 2211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  <->  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) ) ) )
97 simplr2 1042 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  F  e.  Ring )
98 simprll 537 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  q  e.  P )
9916ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  P  =  ( Base `  F
) )
10098, 99eleqtrd 2275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  q  e.  ( Base `  F
) )
10167, 99eleqtrd 2275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  r  e.  ( Base `  F
) )
1027, 8ringacl 13586 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Ring  /\  q  e.  ( Base `  F
)  /\  r  e.  ( Base `  F )
)  ->  ( q
( +g  `  F ) r )  e.  (
Base `  F )
)
10397, 100, 101, 102syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  e.  ( Base `  F
) )
104103, 99eleqtrrd 2276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  e.  P )
10558oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( +g  `  F
) r )  e.  P  /\  w  e.  B ) )  -> 
( ( q ( +g  `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( +g  `  F
) r ) ( .s `  L ) w ) )
10666, 104, 68, 105syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( +g  `  F ) r ) ( .s
`  L ) w ) )
10745oveqrspc2v 5949 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  r  e.  P ) )  -> 
( q ( +g  `  F ) r )  =  ( q ( +g  `  G ) r ) )
108107ad2ant2r 509 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( +g  `  F
) r )  =  ( q ( +g  `  G ) r ) )
109108oveq1d 5937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  L
) w )  =  ( ( q ( +g  `  G ) r ) ( .s
`  L ) w ) )
110106, 109eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( +g  `  G ) r ) ( .s
`  L ) w ) )
111 ovrspc2v 5948 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  P  /\  w  e.  B
)  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B )  ->  (
q ( .s `  K ) w )  e.  B )
11298, 68, 85, 111syl21anc 1248 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) w )  e.  B )
11331oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( .s `  K ) w )  e.  B  /\  (
r ( .s `  K ) w )  e.  B ) )  ->  ( ( q ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) w ) )  =  ( ( q ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) w ) ) )
11466, 112, 87, 113syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  K ) w ) ( +g  `  L ) ( r ( .s `  K
) w ) ) )
11558oveqrspc2v 5949 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  w  e.  B ) )  -> 
( q ( .s
`  K ) w )  =  ( q ( .s `  L
) w ) )
11666, 98, 68, 115syl12anc 1247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) w )  =  ( q ( .s `  L ) w ) )
117116, 70oveq12d 5940 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  L
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )
118114, 117eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )
119110, 118eqeq12d 2211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( q ( +g  `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) )  <->  ( (
q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) )
12071, 96, 1193anbi123d 1323 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( r ( .s `  K ) w )  e.  B  /\  ( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  <->  ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) ) )
1217, 9ringcl 13569 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  Ring  /\  q  e.  ( Base `  F
)  /\  r  e.  ( Base `  F )
)  ->  ( q
( .r `  F
) r )  e.  ( Base `  F
) )
12297, 100, 101, 121syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  e.  ( Base `  F
) )
123122, 99eleqtrrd 2276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  e.  P )
12458oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
q ( .r `  F ) r )  e.  P  /\  w  e.  B ) )  -> 
( ( q ( .r `  F ) r ) ( .s
`  K ) w )  =  ( ( q ( .r `  F ) r ) ( .s `  L
) w ) )
12566, 123, 68, 124syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( ( q ( .r `  F
) r ) ( .s `  L ) w ) )
12646oveqrspc2v 5949 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( q  e.  P  /\  r  e.  P ) )  -> 
( q ( .r
`  F ) r )  =  ( q ( .r `  G
) r ) )
127126ad2ant2r 509 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .r `  F ) r )  =  ( q ( .r `  G ) r ) )
128127oveq1d 5937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  L ) w )  =  ( ( q ( .r `  G
) r ) ( .s `  L ) w ) )
129125, 128eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( ( q ( .r `  G
) r ) ( .s `  L ) w ) )
13058oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( q  e.  P  /\  (
r ( .s `  K ) w )  e.  B ) )  ->  ( q ( .s `  K ) ( r ( .s
`  K ) w ) )  =  ( q ( .s `  L ) ( r ( .s `  K
) w ) ) )
13166, 98, 87, 130syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  K ) w ) ) )
13270oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  L ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) ) )
133131, 132eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
q ( .s `  K ) ( r ( .s `  K
) w ) )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) ) )
134129, 133eqeq12d 2211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( q ( .r `  F ) r ) ( .s
`  K ) w )  =  ( q ( .s `  K
) ( r ( .s `  K ) w ) )  <->  ( (
q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) ) ) )
1357, 10ringidcl 13576 . . . . . . . . . . . . . . . 16  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  ( Base `  F
) )
13697, 135syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  e.  ( Base `  F
) )
137136, 99eleqtrrd 2276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  e.  P )
13858oveqrspc2v 5949 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( 1r `  F )  e.  P  /\  w  e.  B ) )  -> 
( ( 1r `  F ) ( .s
`  K ) w )  =  ( ( 1r `  F ) ( .s `  L
) w ) )
13966, 137, 68, 138syl12anc 1247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  K ) w )  =  ( ( 1r
`  F ) ( .s `  L ) w ) )
140163ad2ant1 1020 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  K  e.  Grp  /\  F  e.  Ring )  ->  P  =  (
Base `  F )
)
141443ad2ant1 1020 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  K  e.  Grp  /\  F  e.  Ring )  ->  P  =  (
Base `  G )
)
142463ad2antl1 1161 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  K  e.  Grp  /\  F  e. 
Ring )  /\  (
x  e.  P  /\  y  e.  P )
)  ->  ( x
( .r `  F
) y )  =  ( x ( .r
`  G ) y ) )
143 simp3 1001 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  K  e.  Grp  /\  F  e.  Ring )  ->  F  e.  Ring )
14447biimpa 296 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  Ring )  ->  G  e.  Ring )
1451443adant2 1018 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  K  e.  Grp  /\  F  e.  Ring )  ->  G  e.  Ring )
146140, 141, 142, 143, 145rngidpropdg 13702 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  K  e.  Grp  /\  F  e.  Ring )  ->  ( 1r `  F )  =  ( 1r `  G ) )
14766, 72, 97, 146syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  ( 1r `  F )  =  ( 1r `  G
) )
148147oveq1d 5937 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  L ) w )  =  ( ( 1r
`  G ) ( .s `  L ) w ) )
149139, 148eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( 1r `  F
) ( .s `  K ) w )  =  ( ( 1r
`  G ) ( .s `  L ) w ) )
150149eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( 1r `  F ) ( .s
`  K ) w )  =  w  <->  ( ( 1r `  G ) ( .s `  L ) w )  =  w ) )
151134, 150anbi12d 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( ( q ( .r `  F
) r ) ( .s `  K ) w )  =  ( q ( .s `  K ) ( r ( .s `  K
) w ) )  /\  ( ( 1r
`  F ) ( .s `  K ) w )  =  w )  <->  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) )
152120, 151anbi12d 473 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( ( q  e.  P  /\  r  e.  P )  /\  (
z  e.  B  /\  w  e.  B )
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
153152anassrs 400 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  (
x ( .s `  K ) y )  e.  B ) )  /\  ( q  e.  P  /\  r  e.  P ) )  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
1541532ralbidva 2519 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x
( .s `  K
) y )  e.  B ) )  /\  ( q  e.  P  /\  r  e.  P
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. z  e.  B  A. w  e.  B  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
1551542ralbidva 2519 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( (
( r ( .s
`  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
15616adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  P  =  ( Base `  F
) )
15720adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  B  =  ( Base `  K
) )
158157eleq2d 2266 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( r ( .s
`  K ) w )  e.  B  <->  ( r
( .s `  K
) w )  e.  ( Base `  K
) ) )
1591583anbi1d 1327 . . . . . . . . . . 11  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( r ( .s `  K ) w )  e.  B  /\  ( r ( .s
`  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  <->  ( ( r ( .s `  K
) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) ) ) )
160159anbi1d 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  ( (
( r ( .s
`  K ) w )  e.  ( Base `  K )  /\  (
r ( .s `  K ) ( w ( +g  `  K
) z ) )  =  ( ( r ( .s `  K
) w ) ( +g  `  K ) ( r ( .s
`  K ) z ) )  /\  (
( q ( +g  `  F ) r ) ( .s `  K
) w )  =  ( ( q ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) w ) ) )  /\  ( ( ( q ( .r
`  F ) r ) ( .s `  K ) w )  =  ( q ( .s `  K ) ( r ( .s
`  K ) w ) )  /\  (
( 1r `  F
) ( .s `  K ) w )  =  w ) ) ) )
161157, 160raleqbidv 2709 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
162157, 161raleqbidv 2709 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
163156, 162raleqbidv 2709 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
164156, 163raleqbidv 2709 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  K
) w )  e.  B  /\  ( r ( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  ( Base `  F
) A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) ) )
16544adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  P  =  ( Base `  G
) )
16630adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  B  =  ( Base `  L
) )
167166eleq2d 2266 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( r ( .s
`  L ) w )  e.  B  <->  ( r
( .s `  L
) w )  e.  ( Base `  L
) ) )
1681673anbi1d 1327 . . . . . . . . . . 11  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( r ( .s `  L ) w )  e.  B  /\  ( r ( .s
`  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  <->  ( ( r ( .s `  L
) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) ) ) )
169168anbi1d 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  ( (
( r ( .s
`  L ) w )  e.  ( Base `  L )  /\  (
r ( .s `  L ) ( w ( +g  `  L
) z ) )  =  ( ( r ( .s `  L
) w ) ( +g  `  L ) ( r ( .s
`  L ) z ) )  /\  (
( q ( +g  `  G ) r ) ( .s `  L
) w )  =  ( ( q ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) w ) ) )  /\  ( ( ( q ( .r
`  G ) r ) ( .s `  L ) w )  =  ( q ( .s `  L ) ( r ( .s
`  L ) w ) )  /\  (
( 1r `  G
) ( .s `  L ) w )  =  w ) ) ) )
170166, 169raleqbidv 2709 . . . . . . . . 9  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
171166, 170raleqbidv 2709 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
172165, 171raleqbidv 2709 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
173165, 172raleqbidv 2709 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  P  A. r  e.  P  A. z  e.  B  A. w  e.  B  ( ( ( r ( .s `  L
) w )  e.  B  /\  ( r ( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) )  <->  A. q  e.  ( Base `  G
) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
174155, 164, 1733bitr3d 218 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( A. q  e.  ( Base `  F ) A. r  e.  ( Base `  F ) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) )  <->  A. q  e.  ( Base `  G
) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) )
17564, 65, 1743anbi123d 1323 . . . 4  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  (
( K  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  ( Base `  F ) A. r  e.  ( Base `  F
) A. z  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( ( r ( .s `  K ) w )  e.  ( Base `  K
)  /\  ( r
( .s `  K
) ( w ( +g  `  K ) z ) )  =  ( ( r ( .s `  K ) w ) ( +g  `  K ) ( r ( .s `  K
) z ) )  /\  ( ( q ( +g  `  F
) r ) ( .s `  K ) w )  =  ( ( q ( .s
`  K ) w ) ( +g  `  K
) ( r ( .s `  K ) w ) ) )  /\  ( ( ( q ( .r `  F ) r ) ( .s `  K
) w )  =  ( q ( .s
`  K ) ( r ( .s `  K ) w ) )  /\  ( ( 1r `  F ) ( .s `  K
) w )  =  w ) ) )  <-> 
( L  e.  Grp  /\  G  e.  Ring  /\  A. q  e.  ( Base `  G ) A. r  e.  ( Base `  G
) A. z  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( ( r ( .s `  L ) w )  e.  ( Base `  L
)  /\  ( r
( .s `  L
) ( w ( +g  `  L ) z ) )  =  ( ( r ( .s `  L ) w ) ( +g  `  L ) ( r ( .s `  L
) z ) )  /\  ( ( q ( +g  `  G
) r ) ( .s `  L ) w )  =  ( ( q ( .s
`  L ) w ) ( +g  `  L
) ( r ( .s `  L ) w ) ) )  /\  ( ( ( q ( .r `  G ) r ) ( .s `  L
) w )  =  ( q ( .s
`  L ) ( r ( .s `  L ) w ) )  /\  ( ( 1r `  G ) ( .s `  L
) w )  =  w ) ) ) ) )
176175, 11, 423bitr4g 223 . . 3  |-  ( (
ph  /\  ( K  e.  Grp  /\  F  e. 
Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s `  K ) y )  e.  B
) )  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
177176ex 115 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  F  e.  Ring  /\  A. x  e.  P  A. y  e.  B  ( x ( .s
`  K ) y )  e.  B )  ->  ( K  e. 
LMod 
<->  L  e.  LMod )
) )
17828, 63, 177pm5.21ndd 706 1  |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   Grpcgrp 13132   1rcur 13515   Ringcrg 13552   LModclmod 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845
This theorem is referenced by:  lmodpropd  13905
  Copyright terms: Public domain W3C validator