ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssixx Unicode version

Theorem ixxssixx 9838
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixx.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixx.3  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A T w ) )
ixx.4  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w U B ) )
Assertion
Ref Expression
ixxssixx  |-  ( A O B )  C_  ( A P B )
Distinct variable groups:    x, w, y, z, A    w, O, x    w, B, x, y, z    w, P    x, R, y, z    x, S, y, z    x, T, y, z    x, U, y, z
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixxssixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 6036 . . 3  |-  ( w  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
3 simp1 987 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  w  e.  RR* )
43a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  w  e.  RR* ) )
5 simpl 108 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  e.  RR* )
6 3simpa 984 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  (
w  e.  RR*  /\  A R w ) )
7 ixx.3 . . . . . . 7  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A T w ) )
87expimpd 361 . . . . . 6  |-  ( A  e.  RR*  ->  ( ( w  e.  RR*  /\  A R w )  ->  A T w ) )
95, 6, 8syl2im 38 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  A T w ) )
10 simpr 109 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
11 3simpb 985 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  (
w  e.  RR*  /\  w S B ) )
12 ixx.4 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w U B ) )
1312ancoms 266 . . . . . . 7  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  (
w S B  ->  w U B ) )
1413expimpd 361 . . . . . 6  |-  ( B  e.  RR*  ->  ( ( w  e.  RR*  /\  w S B )  ->  w U B ) )
1510, 11, 14syl2im 38 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  w U B ) )
164, 9, 153jcad 1168 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  -> 
( w  e.  RR*  /\  A T w  /\  w U B ) ) )
171elixx1 9833 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
18 ixx.2 . . . . 5  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
1918elixx1 9833 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A P B )  <->  ( w  e.  RR*  /\  A T w  /\  w U B ) ) )
2016, 17, 193imtr4d 202 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  ->  w  e.  ( A P B ) ) )
212, 20mpcom 36 . 2  |-  ( w  e.  ( A O B )  ->  w  e.  ( A P B ) )
2221ssriv 3146 1  |-  ( A O B )  C_  ( A P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   {crab 2448    C_ wss 3116   class class class wbr 3982  (class class class)co 5842    e. cmpo 5844   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937
This theorem is referenced by:  ioossicc  9895  icossicc  9896  iocssicc  9897  ioossico  9898
  Copyright terms: Public domain W3C validator