Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixxssixx | Unicode version |
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixxssixx.1 | |
ixx.2 | |
ixx.3 | |
ixx.4 |
Ref | Expression |
---|---|
ixxssixx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxssixx.1 | . . . 4 | |
2 | 1 | elmpocl 6036 | . . 3 |
3 | simp1 987 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | simpl 108 | . . . . . 6 | |
6 | 3simpa 984 | . . . . . 6 | |
7 | ixx.3 | . . . . . . 7 | |
8 | 7 | expimpd 361 | . . . . . 6 |
9 | 5, 6, 8 | syl2im 38 | . . . . 5 |
10 | simpr 109 | . . . . . 6 | |
11 | 3simpb 985 | . . . . . 6 | |
12 | ixx.4 | . . . . . . . 8 | |
13 | 12 | ancoms 266 | . . . . . . 7 |
14 | 13 | expimpd 361 | . . . . . 6 |
15 | 10, 11, 14 | syl2im 38 | . . . . 5 |
16 | 4, 9, 15 | 3jcad 1168 | . . . 4 |
17 | 1 | elixx1 9833 | . . . 4 |
18 | ixx.2 | . . . . 5 | |
19 | 18 | elixx1 9833 | . . . 4 |
20 | 16, 17, 19 | 3imtr4d 202 | . . 3 |
21 | 2, 20 | mpcom 36 | . 2 |
22 | 21 | ssriv 3146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 crab 2448 wss 3116 class class class wbr 3982 (class class class)co 5842 cmpo 5844 cxr 7932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 |
This theorem is referenced by: ioossicc 9895 icossicc 9896 iocssicc 9897 ioossico 9898 |
Copyright terms: Public domain | W3C validator |