Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixxssixx | Unicode version |
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixxssixx.1 | |
ixx.2 | |
ixx.3 | |
ixx.4 |
Ref | Expression |
---|---|
ixxssixx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxssixx.1 | . . . 4 | |
2 | 1 | elmpocl 6047 | . . 3 |
3 | simp1 992 | . . . . . 6 | |
4 | 3 | a1i 9 | . . . . 5 |
5 | simpl 108 | . . . . . 6 | |
6 | 3simpa 989 | . . . . . 6 | |
7 | ixx.3 | . . . . . . 7 | |
8 | 7 | expimpd 361 | . . . . . 6 |
9 | 5, 6, 8 | syl2im 38 | . . . . 5 |
10 | simpr 109 | . . . . . 6 | |
11 | 3simpb 990 | . . . . . 6 | |
12 | ixx.4 | . . . . . . . 8 | |
13 | 12 | ancoms 266 | . . . . . . 7 |
14 | 13 | expimpd 361 | . . . . . 6 |
15 | 10, 11, 14 | syl2im 38 | . . . . 5 |
16 | 4, 9, 15 | 3jcad 1173 | . . . 4 |
17 | 1 | elixx1 9854 | . . . 4 |
18 | ixx.2 | . . . . 5 | |
19 | 18 | elixx1 9854 | . . . 4 |
20 | 16, 17, 19 | 3imtr4d 202 | . . 3 |
21 | 2, 20 | mpcom 36 | . 2 |
22 | 21 | ssriv 3151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 crab 2452 wss 3121 class class class wbr 3989 (class class class)co 5853 cmpo 5855 cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: ioossicc 9916 icossicc 9917 iocssicc 9918 ioossico 9919 |
Copyright terms: Public domain | W3C validator |