ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssixx Unicode version

Theorem ixxssixx 9678
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixx.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixx.3  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A T w ) )
ixx.4  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w U B ) )
Assertion
Ref Expression
ixxssixx  |-  ( A O B )  C_  ( A P B )
Distinct variable groups:    x, w, y, z, A    w, O, x    w, B, x, y, z    w, P    x, R, y, z    x, S, y, z    x, T, y, z    x, U, y, z
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixxssixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21elmpocl 5961 . . 3  |-  ( w  e.  ( A O B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
3 simp1 981 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  w  e.  RR* )
43a1i 9 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  w  e.  RR* ) )
5 simpl 108 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  e.  RR* )
6 3simpa 978 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  (
w  e.  RR*  /\  A R w ) )
7 ixx.3 . . . . . . 7  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A T w ) )
87expimpd 360 . . . . . 6  |-  ( A  e.  RR*  ->  ( ( w  e.  RR*  /\  A R w )  ->  A T w ) )
95, 6, 8syl2im 38 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  A T w ) )
10 simpr 109 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
11 3simpb 979 . . . . . 6  |-  ( ( w  e.  RR*  /\  A R w  /\  w S B )  ->  (
w  e.  RR*  /\  w S B ) )
12 ixx.4 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w S B  ->  w U B ) )
1312ancoms 266 . . . . . . 7  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  (
w S B  ->  w U B ) )
1413expimpd 360 . . . . . 6  |-  ( B  e.  RR*  ->  ( ( w  e.  RR*  /\  w S B )  ->  w U B ) )
1510, 11, 14syl2im 38 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  ->  w U B ) )
164, 9, 153jcad 1162 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( w  e.  RR*  /\  A R w  /\  w S B )  -> 
( w  e.  RR*  /\  A T w  /\  w U B ) ) )
171elixx1 9673 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
18 ixx.2 . . . . 5  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
1918elixx1 9673 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A P B )  <->  ( w  e.  RR*  /\  A T w  /\  w U B ) ) )
2016, 17, 193imtr4d 202 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  ->  w  e.  ( A P B ) ) )
212, 20mpcom 36 . 2  |-  ( w  e.  ( A O B )  ->  w  e.  ( A P B ) )
2221ssriv 3096 1  |-  ( A O B )  C_  ( A P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2418    C_ wss 3066   class class class wbr 3924  (class class class)co 5767    e. cmpo 5769   RR*cxr 7792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797
This theorem is referenced by:  ioossicc  9735  icossicc  9736  iocssicc  9737  ioossico  9738
  Copyright terms: Public domain W3C validator