ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzen Unicode version

Theorem fzen 10109
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )

Proof of Theorem fzen
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzf 10078 . . . . 5  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
2 ffn 5403 . . . . 5  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
31, 2ax-mp 5 . . . 4  |-  ...  Fn  ( ZZ  X.  ZZ )
4 fnovex 5951 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e. 
_V )
53, 4mp3an1 1335 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  _V )
653adant3 1019 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  e. 
_V )
7 simp1 999 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  M  e.  ZZ )
8 simp3 1001 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  ZZ )
97, 8zaddcld 9443 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
10 simp2 1000 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  ZZ )
1110, 8zaddcld 9443 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
12 fnovex 5951 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
133, 12mp3an1 1335 . . 3  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
149, 11, 13syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
) ... ( N  +  K ) )  e. 
_V )
15 elfz1 10079 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
1615biimpd 144 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) ) )
17163adant3 1019 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
18 zaddcl 9357 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ZZ )
1918expcom 116 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
20193ad2ant3 1022 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
2120adantrd 279 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ZZ ) )
22 zre 9321 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
23 zre 9321 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  k  e.  RR )
24 zre 9321 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  RR )
25 leadd1 8449 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  K  e.  RR )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2622, 23, 24, 25syl3an 1291 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2726biimpd 144 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  ->  ( M  +  K )  <_  ( k  +  K
) ) )
2827adantrd 279 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
29283com23 1211 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
30293expia 1207 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) ) )
3130impd 254 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( M  +  K
)  <_  ( k  +  K ) ) )
32313adant2 1018 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
33 zre 9321 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  RR )
34 leadd1 8449 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3523, 33, 24, 34syl3an 1291 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3635biimpd 144 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  ->  ( k  +  K )  <_  ( N  +  K ) ) )
3736adantld 278 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
38373coml 1212 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
39383expia 1207 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) ) )
4039impd 254 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( k  +  K
)  <_  ( N  +  K ) ) )
41403adant1 1017 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  <_  ( N  +  K )
) )
4221, 32, 413jcad 1180 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
43 zaddcl 9357 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
44433adant2 1018 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
45 zaddcl 9357 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
46453adant1 1017 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
47 elfz1 10079 . . . . . . . . 9  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( k  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4844, 46, 47syl2anc 411 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4948biimprd 158 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( k  +  K )  e.  ZZ  /\  ( M  +  K
)  <_  ( k  +  K )  /\  (
k  +  K )  <_  ( N  +  K ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5042, 49syld 45 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) ) ) )
5150com12 30 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K
) ) ) )
52513impb 1201 . . . 4  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5352com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5417, 53syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
55 elfz1 10079 . . . . 5  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( m  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5644, 46, 55syl2anc 411 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5756biimpd 144 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) ) ) )
58 zsubcl 9358 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  -  K
)  e.  ZZ )
5958expcom 116 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
60593ad2ant3 1022 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
6160adantrd 279 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ZZ ) )
62 zre 9321 . . . . . . . . . . . . . 14  |-  ( m  e.  ZZ  ->  m  e.  RR )
63 leaddsub 8457 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  m  e.  RR )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6422, 24, 62, 63syl3an 1291 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6564biimpd 144 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  ->  M  <_  ( m  -  K ) ) )
6665adantrd 279 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  M  <_  (
m  -  K ) ) )
67663expia 1207 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  M  <_  ( m  -  K ) ) ) )
6867impd 254 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  ->  M  <_  ( m  -  K ) ) )
69683adant2 1018 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  M  <_  ( m  -  K ) ) )
70 lesubadd 8453 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7162, 24, 33, 70syl3an 1291 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7271biimprd 158 . . . . . . . . . . . . . 14  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
m  <_  ( N  +  K )  ->  (
m  -  K )  <_  N ) )
7372adantld 278 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
74733coml 1212 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
75743expia 1207 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  ( m  -  K )  <_  N
) ) )
7675impd 254 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
7776ancoms 268 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
78773adant1 1017 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  <_  N
) )
7961, 69, 783jcad 1180 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( (
m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K
)  /\  ( m  -  K )  <_  N
) ) )
80 elfz1 10079 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  -  K )  e.  ( M ... N )  <-> 
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N ) ) )
8180biimprd 158 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( m  -  K )  e.  ZZ  /\  M  <_ 
( m  -  K
)  /\  ( m  -  K )  <_  N
)  ->  ( m  -  K )  e.  ( M ... N ) ) )
82813adant3 1019 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8379, 82syld 45 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ( M ... N ) ) )
8483com12 30 . . . . 5  |-  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
85843impb 1201 . . . 4  |-  ( ( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
8685com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8757, 86syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8817imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) )
8988simp1d 1011 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
9089ex 115 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
k  e.  ZZ ) )
9157imp 124 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) )
9291simp1d 1011 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  m  e.  ZZ )
9392ex 115 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  ->  m  e.  ZZ )
)
94 zcn 9322 . . . . . . 7  |-  ( m  e.  ZZ  ->  m  e.  CC )
95 zcn 9322 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  CC )
96 zcn 9322 . . . . . . 7  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 subadd 8222 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( m  -  K
)  =  k  <->  ( K  +  k )  =  m ) )
98 eqcom 2195 . . . . . . . . 9  |-  ( ( m  -  K )  =  k  <->  k  =  ( m  -  K
) )
99 eqcom 2195 . . . . . . . . 9  |-  ( ( K  +  k )  =  m  <->  m  =  ( K  +  k
) )
10097, 98, 993bitr3g 222 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( K  +  k
) ) )
101 addcom 8156 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
1021013adant1 1017 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
103102eqeq2d 2205 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
m  =  ( K  +  k )  <->  m  =  ( k  +  K
) ) )
104100, 103bitrd 188 . . . . . . 7  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
10594, 95, 96, 104syl3an 1291 . . . . . 6  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1061053coml 1212 . . . . 5  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ  /\  m  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1071063expib 1208 . . . 4  |-  ( K  e.  ZZ  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1081073ad2ant3 1022 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
10990, 93, 108syl2and 295 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ( M ... N )  /\  m  e.  ( ( M  +  K
) ... ( N  +  K ) ) )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1106, 14, 54, 87, 109en3d 6823 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760   ~Pcpw 3601   class class class wbr 4029    X. cxp 4657    Fn wfn 5249   -->wf 5250  (class class class)co 5918    ~~ cen 6792   CCcc 7870   RRcr 7871    + caddc 7875    <_ cle 8055    - cmin 8190   ZZcz 9317   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-fz 10075
This theorem is referenced by:  fz01en  10119  frecfzen2  10498  hashfz  10892  mertenslemi1  11678  hashdvds  12359
  Copyright terms: Public domain W3C validator