ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzen Unicode version

Theorem fzen 9999
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )

Proof of Theorem fzen
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzf 9969 . . . . 5  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
2 ffn 5347 . . . . 5  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
31, 2ax-mp 5 . . . 4  |-  ...  Fn  ( ZZ  X.  ZZ )
4 fnovex 5886 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e. 
_V )
53, 4mp3an1 1319 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  _V )
653adant3 1012 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  e. 
_V )
7 simp1 992 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  M  e.  ZZ )
8 simp3 994 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  ZZ )
97, 8zaddcld 9338 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
10 simp2 993 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  ZZ )
1110, 8zaddcld 9338 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
12 fnovex 5886 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
133, 12mp3an1 1319 . . 3  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
149, 11, 13syl2anc 409 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
) ... ( N  +  K ) )  e. 
_V )
15 elfz1 9970 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
1615biimpd 143 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) ) )
17163adant3 1012 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
18 zaddcl 9252 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ZZ )
1918expcom 115 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
20193ad2ant3 1015 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
2120adantrd 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ZZ ) )
22 zre 9216 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
23 zre 9216 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  k  e.  RR )
24 zre 9216 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  RR )
25 leadd1 8349 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  K  e.  RR )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2622, 23, 24, 25syl3an 1275 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2726biimpd 143 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  ->  ( M  +  K )  <_  ( k  +  K
) ) )
2827adantrd 277 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
29283com23 1204 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
30293expia 1200 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) ) )
3130impd 252 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( M  +  K
)  <_  ( k  +  K ) ) )
32313adant2 1011 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
33 zre 9216 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  RR )
34 leadd1 8349 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3523, 33, 24, 34syl3an 1275 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3635biimpd 143 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  ->  ( k  +  K )  <_  ( N  +  K ) ) )
3736adantld 276 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
38373coml 1205 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
39383expia 1200 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) ) )
4039impd 252 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( k  +  K
)  <_  ( N  +  K ) ) )
41403adant1 1010 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  <_  ( N  +  K )
) )
4221, 32, 413jcad 1173 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
43 zaddcl 9252 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
44433adant2 1011 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
45 zaddcl 9252 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
46453adant1 1010 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
47 elfz1 9970 . . . . . . . . 9  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( k  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4844, 46, 47syl2anc 409 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4948biimprd 157 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( k  +  K )  e.  ZZ  /\  ( M  +  K
)  <_  ( k  +  K )  /\  (
k  +  K )  <_  ( N  +  K ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5042, 49syld 45 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) ) ) )
5150com12 30 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K
) ) ) )
52513impb 1194 . . . 4  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5352com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5417, 53syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
55 elfz1 9970 . . . . 5  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( m  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5644, 46, 55syl2anc 409 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5756biimpd 143 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) ) ) )
58 zsubcl 9253 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  -  K
)  e.  ZZ )
5958expcom 115 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
60593ad2ant3 1015 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
6160adantrd 277 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ZZ ) )
62 zre 9216 . . . . . . . . . . . . . 14  |-  ( m  e.  ZZ  ->  m  e.  RR )
63 leaddsub 8357 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  m  e.  RR )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6422, 24, 62, 63syl3an 1275 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6564biimpd 143 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  ->  M  <_  ( m  -  K ) ) )
6665adantrd 277 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  M  <_  (
m  -  K ) ) )
67663expia 1200 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  M  <_  ( m  -  K ) ) ) )
6867impd 252 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  ->  M  <_  ( m  -  K ) ) )
69683adant2 1011 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  M  <_  ( m  -  K ) ) )
70 lesubadd 8353 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7162, 24, 33, 70syl3an 1275 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7271biimprd 157 . . . . . . . . . . . . . 14  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
m  <_  ( N  +  K )  ->  (
m  -  K )  <_  N ) )
7372adantld 276 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
74733coml 1205 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
75743expia 1200 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  ( m  -  K )  <_  N
) ) )
7675impd 252 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
7776ancoms 266 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
78773adant1 1010 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  <_  N
) )
7961, 69, 783jcad 1173 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( (
m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K
)  /\  ( m  -  K )  <_  N
) ) )
80 elfz1 9970 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  -  K )  e.  ( M ... N )  <-> 
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N ) ) )
8180biimprd 157 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( m  -  K )  e.  ZZ  /\  M  <_ 
( m  -  K
)  /\  ( m  -  K )  <_  N
)  ->  ( m  -  K )  e.  ( M ... N ) ) )
82813adant3 1012 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8379, 82syld 45 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ( M ... N ) ) )
8483com12 30 . . . . 5  |-  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
85843impb 1194 . . . 4  |-  ( ( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
8685com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8757, 86syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8817imp 123 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) )
8988simp1d 1004 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
9089ex 114 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
k  e.  ZZ ) )
9157imp 123 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) )
9291simp1d 1004 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  m  e.  ZZ )
9392ex 114 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  ->  m  e.  ZZ )
)
94 zcn 9217 . . . . . . 7  |-  ( m  e.  ZZ  ->  m  e.  CC )
95 zcn 9217 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  CC )
96 zcn 9217 . . . . . . 7  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 subadd 8122 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( m  -  K
)  =  k  <->  ( K  +  k )  =  m ) )
98 eqcom 2172 . . . . . . . . 9  |-  ( ( m  -  K )  =  k  <->  k  =  ( m  -  K
) )
99 eqcom 2172 . . . . . . . . 9  |-  ( ( K  +  k )  =  m  <->  m  =  ( K  +  k
) )
10097, 98, 993bitr3g 221 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( K  +  k
) ) )
101 addcom 8056 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
1021013adant1 1010 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
103102eqeq2d 2182 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
m  =  ( K  +  k )  <->  m  =  ( k  +  K
) ) )
104100, 103bitrd 187 . . . . . . 7  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
10594, 95, 96, 104syl3an 1275 . . . . . 6  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1061053coml 1205 . . . . 5  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ  /\  m  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1071063expib 1201 . . . 4  |-  ( K  e.  ZZ  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1081073ad2ant3 1015 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
10990, 93, 108syl2and 293 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ( M ... N )  /\  m  e.  ( ( M  +  K
) ... ( N  +  K ) ) )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1106, 14, 54, 87, 109en3d 6747 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730   ~Pcpw 3566   class class class wbr 3989    X. cxp 4609    Fn wfn 5193   -->wf 5194  (class class class)co 5853    ~~ cen 6716   CCcc 7772   RRcr 7773    + caddc 7777    <_ cle 7955    - cmin 8090   ZZcz 9212   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-fz 9966
This theorem is referenced by:  fz01en  10009  frecfzen2  10383  hashfz  10756  mertenslemi1  11498  hashdvds  12175
  Copyright terms: Public domain W3C validator