| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 |
|
| mpbir3an.2 |
|
| mpbir3an.3 |
|
| mpbir3an.4 |
|
| Ref | Expression |
|---|---|
| mpbir3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 |
. . 3
| |
| 2 | mpbir3an.2 |
. . 3
| |
| 3 | mpbir3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1177 |
. 2
|
| 5 | mpbir3an.4 |
. 2
| |
| 6 | 4, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limon 4550 limom 4651 issmo 6355 xpider 6674 aptap 8694 1eluzge0 9665 2eluzge1 9667 0elunit 10078 1elunit 10079 fz0to3un2pr 10215 4fvwrd4 10232 fzo0to42pr 10313 xnn0nnen 10546 resqrexlemga 11205 fprodge0 11819 fprodge1 11821 sincos1sgn 11947 sincos2sgn 11948 igz 12568 qnnen 12673 strleun 12807 cnsubmlem 14210 cnsubglem 14211 cnsubrglem 14212 sinhalfpilem 15111 sincos4thpi 15160 sincos6thpi 15162 pigt3 15164 2logb9irr 15291 2logb9irrap 15297 |
| Copyright terms: Public domain | W3C validator |