ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbir3an Unicode version

Theorem mpbir3an 1174
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
mpbir3an.1  |-  ps
mpbir3an.2  |-  ch
mpbir3an.3  |-  th
mpbir3an.4  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
mpbir3an  |-  ph

Proof of Theorem mpbir3an
StepHypRef Expression
1 mpbir3an.1 . . 3  |-  ps
2 mpbir3an.2 . . 3  |-  ch
3 mpbir3an.3 . . 3  |-  th
41, 2, 33pm3.2i 1170 . 2  |-  ( ps 
/\  ch  /\  th )
5 mpbir3an.4 . 2  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
64, 5mpbir 145 1  |-  ph
Colors of variables: wff set class
Syntax hints:    <-> wb 104    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  limon  4495  limom  4596  issmo  6265  xpider  6582  1eluzge0  9526  2eluzge1  9528  0elunit  9936  1elunit  9937  fz0to3un2pr  10072  4fvwrd4  10089  fzo0to42pr  10169  resqrexlemga  10980  fprodge0  11593  fprodge1  11595  sincos1sgn  11720  sincos2sgn  11721  igz  12319  qnnen  12379  strleun  12500  sinhalfpilem  13471  sincos4thpi  13520  sincos6thpi  13522  pigt3  13524  2logb9irr  13648  2logb9irrap  13654
  Copyright terms: Public domain W3C validator