| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mpbir3an.1 | 
 | 
| mpbir3an.2 | 
 | 
| mpbir3an.3 | 
 | 
| mpbir3an.4 | 
 | 
| Ref | Expression | 
|---|---|
| mpbir3an | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbir3an.1 | 
. . 3
 | |
| 2 | mpbir3an.2 | 
. . 3
 | |
| 3 | mpbir3an.3 | 
. . 3
 | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | 
. 2
 | 
| 5 | mpbir3an.4 | 
. 2
 | |
| 6 | 4, 5 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: limon 4549 limom 4650 issmo 6346 xpider 6665 aptap 8677 1eluzge0 9648 2eluzge1 9650 0elunit 10061 1elunit 10062 fz0to3un2pr 10198 4fvwrd4 10215 fzo0to42pr 10296 xnn0nnen 10529 resqrexlemga 11188 fprodge0 11802 fprodge1 11804 sincos1sgn 11930 sincos2sgn 11931 igz 12543 qnnen 12648 strleun 12782 cnsubmlem 14134 cnsubglem 14135 cnsubrglem 14136 sinhalfpilem 15027 sincos4thpi 15076 sincos6thpi 15078 pigt3 15080 2logb9irr 15207 2logb9irrap 15213 | 
| Copyright terms: Public domain | W3C validator |