| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 |
|
| mpbir3an.2 |
|
| mpbir3an.3 |
|
| mpbir3an.4 |
|
| Ref | Expression |
|---|---|
| mpbir3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 |
. . 3
| |
| 2 | mpbir3an.2 |
. . 3
| |
| 3 | mpbir3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1199 |
. 2
|
| 5 | mpbir3an.4 |
. 2
| |
| 6 | 4, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limon 4604 limom 4705 issmo 6432 xpider 6751 aptap 8793 1eluzge0 9765 2eluzge1 9767 0elunit 10178 1elunit 10179 fz0to3un2pr 10315 4fvwrd4 10332 fzo0to42pr 10421 xnn0nnen 10654 resqrexlemga 11529 fprodge0 12143 fprodge1 12145 sincos1sgn 12271 sincos2sgn 12272 igz 12892 qnnen 12997 strleun 13132 cnsubmlem 14536 cnsubglem 14537 cnsubrglem 14538 sinhalfpilem 15459 sincos4thpi 15508 sincos6thpi 15510 pigt3 15512 2logb9irr 15639 2logb9irrap 15645 |
| Copyright terms: Public domain | W3C validator |