| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 |
|
| mpbir3an.2 |
|
| mpbir3an.3 |
|
| mpbir3an.4 |
|
| Ref | Expression |
|---|---|
| mpbir3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 |
. . 3
| |
| 2 | mpbir3an.2 |
. . 3
| |
| 3 | mpbir3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1177 |
. 2
|
| 5 | mpbir3an.4 |
. 2
| |
| 6 | 4, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limon 4559 limom 4660 issmo 6364 xpider 6683 aptap 8705 1eluzge0 9677 2eluzge1 9679 0elunit 10090 1elunit 10091 fz0to3un2pr 10227 4fvwrd4 10244 fzo0to42pr 10330 xnn0nnen 10563 resqrexlemga 11253 fprodge0 11867 fprodge1 11869 sincos1sgn 11995 sincos2sgn 11996 igz 12616 qnnen 12721 strleun 12855 cnsubmlem 14258 cnsubglem 14259 cnsubrglem 14260 sinhalfpilem 15181 sincos4thpi 15230 sincos6thpi 15232 pigt3 15234 2logb9irr 15361 2logb9irrap 15367 |
| Copyright terms: Public domain | W3C validator |