| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 |
|
| mpbir3an.2 |
|
| mpbir3an.3 |
|
| mpbir3an.4 |
|
| Ref | Expression |
|---|---|
| mpbir3an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 |
. . 3
| |
| 2 | mpbir3an.2 |
. . 3
| |
| 3 | mpbir3an.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1178 |
. 2
|
| 5 | mpbir3an.4 |
. 2
| |
| 6 | 4, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limon 4569 limom 4670 issmo 6387 xpider 6706 aptap 8743 1eluzge0 9715 2eluzge1 9717 0elunit 10128 1elunit 10129 fz0to3un2pr 10265 4fvwrd4 10282 fzo0to42pr 10371 xnn0nnen 10604 resqrexlemga 11409 fprodge0 12023 fprodge1 12025 sincos1sgn 12151 sincos2sgn 12152 igz 12772 qnnen 12877 strleun 13011 cnsubmlem 14415 cnsubglem 14416 cnsubrglem 14417 sinhalfpilem 15338 sincos4thpi 15387 sincos6thpi 15389 pigt3 15391 2logb9irr 15518 2logb9irrap 15524 |
| Copyright terms: Public domain | W3C validator |