ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 Unicode version

Theorem sb6 1840
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1839 . . 3  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
21anbi2i 450 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( ( x  =  y  ->  ph )  /\  A. x ( x  =  y  ->  ph )
) )
3 df-sb 1719 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
4 ax-4 1470 . . 3  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54pm4.71ri 387 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  ( (
x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ph ) ) )
62, 3, 53bitr4i 211 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312   E.wex 1451   [wsb 1718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-sb 1719
This theorem is referenced by:  sb5  1841  sbnv  1842  sbanv  1843  sbi1v  1845  sbi2v  1846  hbs1  1889  2sb6  1935  sbcom2v  1936  sb6a  1939  sb7af  1944  sbalyz  1950  sbal1yz  1952  exsb  1959  sbal2  1973
  Copyright terms: Public domain W3C validator