ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6 Unicode version

Theorem sb6 1898
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb6  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb6
StepHypRef Expression
1 sb56 1897 . . 3  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
21anbi2i 457 . 2  |-  ( ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
)  <->  ( ( x  =  y  ->  ph )  /\  A. x ( x  =  y  ->  ph )
) )
3 df-sb 1774 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
4 ax-4 1521 . . 3  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54pm4.71ri 392 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  ( (
x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ph ) ) )
62, 3, 53bitr4i 212 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   E.wex 1503   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  sb5  1899  sbnv  1900  sbanv  1901  sbi1v  1903  sbi2v  1904  hbs1  1950  2sb6  1996  sbcom2v  1997  sb6a  2000  sb7af  2005  sbalyz  2011  sbal1yz  2013  exsb  2020  sbal2  2032  cbvabw  2312  nfabdw  2351  csbcow  3083
  Copyright terms: Public domain W3C validator