Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcof2 | Unicode version |
Description: Version of sbco 1961 where is not free in . (Contributed by Jim Kingdon, 28-Dec-2017.) |
Ref | Expression |
---|---|
sbcof2.1 |
Ref | Expression |
---|---|
sbcof2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcof2.1 | . . . . . . 7 | |
2 | 1 | hbsb3 1801 | . . . . . 6 |
3 | 2 | sb6f 1796 | . . . . 5 |
4 | 1 | sb6f 1796 | . . . . . . 7 |
5 | 4 | imbi2i 225 | . . . . . 6 |
6 | 5 | albii 1463 | . . . . 5 |
7 | 3, 6 | bitri 183 | . . . 4 |
8 | ax-11 1499 | . . . . . . 7 | |
9 | equcomi 1697 | . . . . . . . . . . 11 | |
10 | 9 | imim1i 60 | . . . . . . . . . 10 |
11 | 10 | imim2i 12 | . . . . . . . . 9 |
12 | 11 | pm2.43d 50 | . . . . . . . 8 |
13 | 12 | alimi 1448 | . . . . . . 7 |
14 | 8, 13 | syl6 33 | . . . . . 6 |
15 | 14 | a2i 11 | . . . . 5 |
16 | 15 | alimi 1448 | . . . 4 |
17 | 7, 16 | sylbi 120 | . . 3 |
18 | ax-i9 1523 | . . . . 5 | |
19 | exim 1592 | . . . . 5 | |
20 | 18, 19 | mpi 15 | . . . 4 |
21 | ax-ial 1527 | . . . . 5 | |
22 | 21 | 19.9h 1636 | . . . 4 |
23 | 20, 22 | sylib 121 | . . 3 |
24 | sb2 1760 | . . 3 | |
25 | 17, 23, 24 | 3syl 17 | . 2 |
26 | sb1 1759 | . . . 4 | |
27 | simpl 108 | . . . . . 6 | |
28 | 19.8a 1583 | . . . . . 6 | |
29 | 27, 28 | jca 304 | . . . . 5 |
30 | 29 | eximi 1593 | . . . 4 |
31 | 9 | anim1i 338 | . . . . . . . . 9 |
32 | 27, 31 | jca 304 | . . . . . . . 8 |
33 | 32 | eximi 1593 | . . . . . . 7 |
34 | ax11e 1789 | . . . . . . 7 | |
35 | 33, 34 | syl5 32 | . . . . . 6 |
36 | 35 | imdistani 443 | . . . . 5 |
37 | 36 | eximi 1593 | . . . 4 |
38 | 26, 30, 37 | 3syl 17 | . . 3 |
39 | 2 | sb5f 1797 | . . . 4 |
40 | 1 | sb5f 1797 | . . . . . 6 |
41 | 40 | anbi2i 454 | . . . . 5 |
42 | 41 | exbii 1598 | . . . 4 |
43 | 39, 42 | bitri 183 | . . 3 |
44 | 38, 43 | sylibr 133 | . 2 |
45 | 25, 44 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sbid2h 1842 |
Copyright terms: Public domain | W3C validator |