 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-11 GIF version

Axiom ax-11 1449
 Description: Axiom of Variable Substitution. One of the 5 equality axioms of predicate calculus. The final consequent ∀𝑥(𝑥 = 𝑦 → 𝜑) is a way of expressing "𝑦 substituted for 𝑥 in wff 𝜑 " (cf. sb6 1821). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1762, ax11v2 1755 and ax-11o 1758. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ax-11 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
31, 2weq 1444 . 2 wff 𝑥 = 𝑦
4 wph . . . 4 wff 𝜑
54, 2wal 1294 . . 3 wff 𝑦𝜑
63, 4wi 4 . . . 4 wff (𝑥 = 𝑦𝜑)
76, 1wal 1294 . . 3 wff 𝑥(𝑥 = 𝑦𝜑)
85, 7wi 4 . 2 wff (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
93, 8wi 4 1 wff (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff set class This axiom is referenced by:  ax10o  1657  equs5a  1729  sbcof2  1745  ax11o  1757  ax11v  1762
 Copyright terms: Public domain W3C validator