ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-11 GIF version

Axiom ax-11 1499
Description: Axiom of Variable Substitution. One of the 5 equality axioms of predicate calculus. The final consequent 𝑥(𝑥 = 𝑦𝜑) is a way of expressing "𝑦 substituted for 𝑥 in wff 𝜑 " (cf. sb6 1879). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases.

Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1820, ax11v2 1813 and ax-11o 1816. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
ax-11 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
31, 2weq 1496 . 2 wff 𝑥 = 𝑦
4 wph . . . 4 wff 𝜑
54, 2wal 1346 . . 3 wff 𝑦𝜑
63, 4wi 4 . . . 4 wff (𝑥 = 𝑦𝜑)
76, 1wal 1346 . . 3 wff 𝑥(𝑥 = 𝑦𝜑)
85, 7wi 4 . 2 wff (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
93, 8wi 4 1 wff (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
This axiom is referenced by:  ax10o  1708  equs5a  1787  sbcof2  1803  ax11o  1815  ax11v  1820
  Copyright terms: Public domain W3C validator