ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11o Unicode version

Theorem ax11o 1845
Description: Derivation of set.mm's original ax-11o 1846 from the shorter ax-11 1529 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1837 or ax-17 1549.

Normally, ax11o 1845 should be used rather than ax-11o 1846, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

Assertion
Ref Expression
ax11o  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )

Proof of Theorem ax11o
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ax-11 1529 . 2  |-  ( x  =  z  ->  ( A. z ph  ->  A. x
( x  =  z  ->  ph ) ) )
21ax11a2 1844 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  ax11b  1849  equs5  1852
  Copyright terms: Public domain W3C validator