Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdal Unicode version

Axiom ax-bdal 15310
Description: A bounded universal quantification of a bounded formula is bounded. Note the disjoint variable condition on  x ,  y. (Contributed by BJ, 25-Sep-2019.)
Hypothesis
Ref Expression
bdal.1  |- BOUNDED  ph
Assertion
Ref Expression
ax-bdal  |- BOUNDED  A. x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Detailed syntax breakdown of Axiom ax-bdal
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  setvar  x
3 vy . . . 4  setvar  y
43cv 1363 . . 3  class  y
51, 2, 4wral 2472 . 2  wff  A. x  e.  y  ph
65wbd 15304 1  wff BOUNDED  A. x  e.  y 
ph
Colors of variables: wff set class
This axiom is referenced by:  bdreu  15347  bdss  15356  bdcint  15369  bdciin  15371  bdcriota  15375  bj-bdind  15422  bj-nntrans  15443
  Copyright terms: Public domain W3C validator