Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin Unicode version

Theorem bdciin 13914
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1  |- BOUNDED  A
Assertion
Ref Expression
bdciin  |- BOUNDED 
|^|_ x  e.  y  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bdciin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5  |- BOUNDED  A
21bdeli 13881 . . . 4  |- BOUNDED  z  e.  A
32ax-bdal 13853 . . 3  |- BOUNDED  A. x  e.  y  z  e.  A
43bdcab 13884 . 2  |- BOUNDED  { z  |  A. x  e.  y  z  e.  A }
5 df-iin 3876 . 2  |-  |^|_ x  e.  y  A  =  { z  |  A. x  e.  y  z  e.  A }
64, 5bdceqir 13879 1  |- BOUNDED 
|^|_ x  e.  y  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   {cab 2156   A.wral 2448   |^|_ciin 3874  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdal 13853  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-iin 3876  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator