Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin Unicode version

Theorem bdciin 16014
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1  |- BOUNDED  A
Assertion
Ref Expression
bdciin  |- BOUNDED 
|^|_ x  e.  y  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bdciin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5  |- BOUNDED  A
21bdeli 15981 . . . 4  |- BOUNDED  z  e.  A
32ax-bdal 15953 . . 3  |- BOUNDED  A. x  e.  y  z  e.  A
43bdcab 15984 . 2  |- BOUNDED  { z  |  A. x  e.  y  z  e.  A }
5 df-iin 3944 . 2  |-  |^|_ x  e.  y  A  =  { z  |  A. x  e.  y  z  e.  A }
64, 5bdceqir 15979 1  |- BOUNDED 
|^|_ x  e.  y  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   {cab 2193   A.wral 2486   |^|_ciin 3942  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdal 15953  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-iin 3944  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator