Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin Unicode version

Theorem bdciin 13771
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1  |- BOUNDED  A
Assertion
Ref Expression
bdciin  |- BOUNDED 
|^|_ x  e.  y  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bdciin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5  |- BOUNDED  A
21bdeli 13738 . . . 4  |- BOUNDED  z  e.  A
32ax-bdal 13710 . . 3  |- BOUNDED  A. x  e.  y  z  e.  A
43bdcab 13741 . 2  |- BOUNDED  { z  |  A. x  e.  y  z  e.  A }
5 df-iin 3869 . 2  |-  |^|_ x  e.  y  A  =  { z  |  A. x  e.  y  z  e.  A }
64, 5bdceqir 13736 1  |- BOUNDED 
|^|_ x  e.  y  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   {cab 2151   A.wral 2444   |^|_ciin 3867  BOUNDED wbdc 13732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13705  ax-bdal 13710  ax-bdsb 13714
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-iin 3869  df-bdc 13733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator