Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdciin Unicode version

Theorem bdciin 14191
Description: The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdciun.1  |- BOUNDED  A
Assertion
Ref Expression
bdciin  |- BOUNDED 
|^|_ x  e.  y  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bdciin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdciun.1 . . . . 5  |- BOUNDED  A
21bdeli 14158 . . . 4  |- BOUNDED  z  e.  A
32ax-bdal 14130 . . 3  |- BOUNDED  A. x  e.  y  z  e.  A
43bdcab 14161 . 2  |- BOUNDED  { z  |  A. x  e.  y  z  e.  A }
5 df-iin 3885 . 2  |-  |^|_ x  e.  y  A  =  { z  |  A. x  e.  y  z  e.  A }
64, 5bdceqir 14156 1  |- BOUNDED 
|^|_ x  e.  y  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   {cab 2161   A.wral 2453   |^|_ciin 3883  BOUNDED wbdc 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-17 1524  ax-ial 1532  ax-ext 2157  ax-bd0 14125  ax-bdal 14130  ax-bdsb 14134
This theorem depends on definitions:  df-bi 117  df-clab 2162  df-cleq 2168  df-clel 2171  df-iin 3885  df-bdc 14153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator