Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss Unicode version

Theorem bdss 16227
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1  |- BOUNDED  A
Assertion
Ref Expression
bdss  |- BOUNDED  x  C_  A

Proof of Theorem bdss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4  |- BOUNDED  A
21bdeli 16209 . . 3  |- BOUNDED  y  e.  A
32ax-bdal 16181 . 2  |- BOUNDED  A. y  e.  x  y  e.  A
4 dfss3 3213 . 2  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
53, 4bd0r 16188 1  |- BOUNDED  x  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   A.wral 2508    C_ wss 3197  BOUNDED wbd 16175  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdal 16181
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-bdc 16204
This theorem is referenced by:  bdeq0  16230  bdcpw  16232  bdvsn  16237  bdop  16238  bdeqsuc  16244  bj-nntrans  16314  bj-omtrans  16319
  Copyright terms: Public domain W3C validator