Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss Unicode version

Theorem bdss 13746
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1  |- BOUNDED  A
Assertion
Ref Expression
bdss  |- BOUNDED  x  C_  A

Proof of Theorem bdss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4  |- BOUNDED  A
21bdeli 13728 . . 3  |- BOUNDED  y  e.  A
32ax-bdal 13700 . 2  |- BOUNDED  A. y  e.  x  y  e.  A
4 dfss3 3132 . 2  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
53, 4bd0r 13707 1  |- BOUNDED  x  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   A.wral 2444    C_ wss 3116  BOUNDED wbd 13694  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdal 13700
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-in 3122  df-ss 3129  df-bdc 13723
This theorem is referenced by:  bdeq0  13749  bdcpw  13751  bdvsn  13756  bdop  13757  bdeqsuc  13763  bj-nntrans  13833  bj-omtrans  13838
  Copyright terms: Public domain W3C validator