Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss Unicode version

Theorem bdss 15999
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1  |- BOUNDED  A
Assertion
Ref Expression
bdss  |- BOUNDED  x  C_  A

Proof of Theorem bdss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4  |- BOUNDED  A
21bdeli 15981 . . 3  |- BOUNDED  y  e.  A
32ax-bdal 15953 . 2  |- BOUNDED  A. y  e.  x  y  e.  A
4 dfss3 3190 . 2  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
53, 4bd0r 15960 1  |- BOUNDED  x  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   A.wral 2486    C_ wss 3174  BOUNDED wbd 15947  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdal 15953
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-in 3180  df-ss 3187  df-bdc 15976
This theorem is referenced by:  bdeq0  16002  bdcpw  16004  bdvsn  16009  bdop  16010  bdeqsuc  16016  bj-nntrans  16086  bj-omtrans  16091
  Copyright terms: Public domain W3C validator