Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss Unicode version

Theorem bdss 13899
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1  |- BOUNDED  A
Assertion
Ref Expression
bdss  |- BOUNDED  x  C_  A

Proof of Theorem bdss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4  |- BOUNDED  A
21bdeli 13881 . . 3  |- BOUNDED  y  e.  A
32ax-bdal 13853 . 2  |- BOUNDED  A. y  e.  x  y  e.  A
4 dfss3 3137 . 2  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
53, 4bd0r 13860 1  |- BOUNDED  x  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   A.wral 2448    C_ wss 3121  BOUNDED wbd 13847  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bd0 13848  ax-bdal 13853
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-in 3127  df-ss 3134  df-bdc 13876
This theorem is referenced by:  bdeq0  13902  bdcpw  13904  bdvsn  13909  bdop  13910  bdeqsuc  13916  bj-nntrans  13986  bj-omtrans  13991
  Copyright terms: Public domain W3C validator