Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdss Unicode version

Theorem bdss 15510
Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdss.1  |- BOUNDED  A
Assertion
Ref Expression
bdss  |- BOUNDED  x  C_  A

Proof of Theorem bdss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdss.1 . . . 4  |- BOUNDED  A
21bdeli 15492 . . 3  |- BOUNDED  y  e.  A
32ax-bdal 15464 . 2  |- BOUNDED  A. y  e.  x  y  e.  A
4 dfss3 3173 . 2  |-  ( x 
C_  A  <->  A. y  e.  x  y  e.  A )
53, 4bd0r 15471 1  |- BOUNDED  x  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   A.wral 2475    C_ wss 3157  BOUNDED wbd 15458  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdal 15464
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-in 3163  df-ss 3170  df-bdc 15487
This theorem is referenced by:  bdeq0  15513  bdcpw  15515  bdvsn  15520  bdop  15521  bdeqsuc  15527  bj-nntrans  15597  bj-omtrans  15602
  Copyright terms: Public domain W3C validator