Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind Unicode version

Theorem bj-bdind 15684
Description: Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind  |- BOUNDED Ind  x

Proof of Theorem bj-bdind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15622 . . 3  |- BOUNDED  (/)  e.  x
2 bj-bdsucel 15636 . . . 4  |- BOUNDED  suc  y  e.  x
32ax-bdal 15572 . . 3  |- BOUNDED  A. y  e.  x  suc  y  e.  x
41, 3ax-bdan 15569 . 2  |- BOUNDED  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)
5 df-bj-ind 15681 . 2  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
64, 5bd0r 15579 1  |- BOUNDED Ind  x
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2167   A.wral 2475   (/)c0 3451   suc csuc 4401  BOUNDED wbd 15566  Ind wind 15680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15567  ax-bdim 15568  ax-bdan 15569  ax-bdor 15570  ax-bdn 15571  ax-bdal 15572  ax-bdex 15573  ax-bdeq 15574  ax-bdel 15575  ax-bdsb 15576
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-suc 4407  df-bdc 15595  df-bj-ind 15681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator