Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind Unicode version

Theorem bj-bdind 15422
Description: Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind  |- BOUNDED Ind  x

Proof of Theorem bj-bdind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15360 . . 3  |- BOUNDED  (/)  e.  x
2 bj-bdsucel 15374 . . . 4  |- BOUNDED  suc  y  e.  x
32ax-bdal 15310 . . 3  |- BOUNDED  A. y  e.  x  suc  y  e.  x
41, 3ax-bdan 15307 . 2  |- BOUNDED  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)
5 df-bj-ind 15419 . 2  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
64, 5bd0r 15317 1  |- BOUNDED Ind  x
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   A.wral 2472   (/)c0 3446   suc csuc 4396  BOUNDED wbd 15304  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15305  ax-bdim 15306  ax-bdan 15307  ax-bdor 15308  ax-bdn 15309  ax-bdal 15310  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-suc 4402  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator