Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdind Unicode version

Theorem bj-bdind 15866
Description: Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bdind  |- BOUNDED Ind  x

Proof of Theorem bj-bdind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bj-bd0el 15804 . . 3  |- BOUNDED  (/)  e.  x
2 bj-bdsucel 15818 . . . 4  |- BOUNDED  suc  y  e.  x
32ax-bdal 15754 . . 3  |- BOUNDED  A. y  e.  x  suc  y  e.  x
41, 3ax-bdan 15751 . 2  |- BOUNDED  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
)
5 df-bj-ind 15863 . 2  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
64, 5bd0r 15761 1  |- BOUNDED Ind  x
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2176   A.wral 2484   (/)c0 3460   suc csuc 4412  BOUNDED wbd 15748  Ind wind 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bd0 15749  ax-bdim 15750  ax-bdan 15751  ax-bdor 15752  ax-bdn 15753  ax-bdal 15754  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-suc 4418  df-bdc 15777  df-bj-ind 15863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator