| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdal | GIF version | ||
| Description: A bounded universal quantification of a bounded formula is bounded. Note the disjoint variable condition on 𝑥, 𝑦. (Contributed by BJ, 25-Sep-2019.) |
| Ref | Expression |
|---|---|
| bdal.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| ax-bdal | ⊢ BOUNDED ∀𝑥 ∈ 𝑦 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . . 4 setvar 𝑦 | |
| 4 | 3 | cv 1363 | . . 3 class 𝑦 |
| 5 | 1, 2, 4 | wral 2475 | . 2 wff ∀𝑥 ∈ 𝑦 𝜑 |
| 6 | 5 | wbd 15542 | 1 wff BOUNDED ∀𝑥 ∈ 𝑦 𝜑 |
| Colors of variables: wff set class |
| This axiom is referenced by: bdreu 15585 bdss 15594 bdcint 15607 bdciin 15609 bdcriota 15613 bj-bdind 15660 bj-nntrans 15681 |
| Copyright terms: Public domain | W3C validator |