| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdreu | Unicode version | ||
| Description: Boundedness of
existential uniqueness.
 
       Remark regarding restricted quantifiers: the formula   | 
| Ref | Expression | 
|---|---|
| bdreu.1 | 
 | 
| Ref | Expression | 
|---|---|
| bdreu | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdreu.1 | 
. . . 4
 | |
| 2 | 1 | ax-bdex 15465 | 
. . 3
 | 
| 3 | ax-bdeq 15466 | 
. . . . . 6
 | |
| 4 | 1, 3 | ax-bdim 15460 | 
. . . . 5
 | 
| 5 | 4 | ax-bdal 15464 | 
. . . 4
 | 
| 6 | 5 | ax-bdex 15465 | 
. . 3
 | 
| 7 | 2, 6 | ax-bdan 15461 | 
. 2
 | 
| 8 | reu3 2954 | 
. 2
 | |
| 9 | 7, 8 | bd0r 15471 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdim 15460 ax-bdan 15461 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-cleq 2189 df-clel 2192 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 | 
| This theorem is referenced by: bdrmo 15502 | 
| Copyright terms: Public domain | W3C validator |