Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu Unicode version

Theorem bdreu 13224
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula  A. x  e.  A ph need not be bounded even if 
A and  ph are. Indeed,  _V is bounded by bdcvv 13226, and  |-  ( A. x  e. 
_V ph  <->  A. x ph ) (in minimal propositional calculus), so by bd0 13193, if  A. x  e. 
_V ph were bounded when  ph is bounded, then  A. x ph would be bounded as well when  ph is bounded, which is not the case. The same remark holds with  E. ,  E! ,  E*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1  |- BOUNDED  ph
Assertion
Ref Expression
bdreu  |- BOUNDED  E! x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdreu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4  |- BOUNDED  ph
21ax-bdex 13188 . . 3  |- BOUNDED  E. x  e.  y 
ph
3 ax-bdeq 13189 . . . . . 6  |- BOUNDED  x  =  z
41, 3ax-bdim 13183 . . . . 5  |- BOUNDED  ( ph  ->  x  =  z )
54ax-bdal 13187 . . . 4  |- BOUNDED  A. x  e.  y  ( ph  ->  x  =  z )
65ax-bdex 13188 . . 3  |- BOUNDED  E. z  e.  y 
A. x  e.  y  ( ph  ->  x  =  z )
72, 6ax-bdan 13184 . 2  |- BOUNDED  ( E. x  e.  y  ph  /\  E. z  e.  y  A. x  e.  y  ( ph  ->  x  =  z ) )
8 reu3 2878 . 2  |-  ( E! x  e.  y  ph  <->  ( E. x  e.  y 
ph  /\  E. z  e.  y  A. x  e.  y  ( ph  ->  x  =  z ) ) )
97, 8bd0r 13194 1  |- BOUNDED  E! x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wral 2417   E.wrex 2418   E!wreu 2419  BOUNDED wbd 13181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-bd0 13182  ax-bdim 13183  ax-bdan 13184  ax-bdal 13187  ax-bdex 13188  ax-bdeq 13189
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-cleq 2133  df-clel 2136  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425
This theorem is referenced by:  bdrmo  13225
  Copyright terms: Public domain W3C validator