Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint Unicode version

Theorem bdcint 16012
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint  |- BOUNDED 
|^| x

Proof of Theorem bdcint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15956 . . . . 5  |- BOUNDED  y  e.  z
21ax-bdal 15953 . . . 4  |- BOUNDED  A. z  e.  x  y  e.  z
3 df-ral 2491 . . . 4  |-  ( A. z  e.  x  y  e.  z  <->  A. z ( z  e.  x  ->  y  e.  z ) )
42, 3bd0 15959 . . 3  |- BOUNDED  A. z ( z  e.  x  ->  y  e.  z )
54bdcab 15984 . 2  |- BOUNDED  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
6 df-int 3900 . 2  |-  |^| x  =  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
75, 6bdceqir 15979 1  |- BOUNDED 
|^| x
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   {cab 2193   A.wral 2486   |^|cint 3899  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdal 15953  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-int 3900  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator