Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | Unicode version |
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcint | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 13713 | . . . . 5 BOUNDED | |
2 | 1 | ax-bdal 13710 | . . . 4 BOUNDED |
3 | df-ral 2449 | . . . 4 | |
4 | 2, 3 | bd0 13716 | . . 3 BOUNDED |
5 | 4 | bdcab 13741 | . 2 BOUNDED |
6 | df-int 3825 | . 2 | |
7 | 5, 6 | bdceqir 13736 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 cab 2151 wral 2444 cint 3824 BOUNDED wbdc 13732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-bd0 13705 ax-bdal 13710 ax-bdel 13713 ax-bdsb 13714 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-int 3825 df-bdc 13733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |