Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint Unicode version

Theorem bdcint 13769
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint  |- BOUNDED 
|^| x

Proof of Theorem bdcint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 13713 . . . . 5  |- BOUNDED  y  e.  z
21ax-bdal 13710 . . . 4  |- BOUNDED  A. z  e.  x  y  e.  z
3 df-ral 2449 . . . 4  |-  ( A. z  e.  x  y  e.  z  <->  A. z ( z  e.  x  ->  y  e.  z ) )
42, 3bd0 13716 . . 3  |- BOUNDED  A. z ( z  e.  x  ->  y  e.  z )
54bdcab 13741 . 2  |- BOUNDED  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
6 df-int 3825 . 2  |-  |^| x  =  { y  |  A. z ( z  e.  x  ->  y  e.  z ) }
75, 6bdceqir 13736 1  |- BOUNDED 
|^| x
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   {cab 2151   A.wral 2444   |^|cint 3824  BOUNDED wbdc 13732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13705  ax-bdal 13710  ax-bdel 13713  ax-bdsb 13714
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-int 3825  df-bdc 13733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator