| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | Unicode version | ||
| Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdel 15551 |
. . . . 5
| |
| 2 | 1 | ax-bdal 15548 |
. . . 4
|
| 3 | df-ral 2480 |
. . . 4
| |
| 4 | 2, 3 | bd0 15554 |
. . 3
|
| 5 | 4 | bdcab 15579 |
. 2
|
| 6 | df-int 3876 |
. 2
| |
| 7 | 5, 6 | bdceqir 15574 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15543 ax-bdal 15548 ax-bdel 15551 ax-bdsb 15552 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-int 3876 df-bdc 15571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |