Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans Unicode version

Theorem bj-nntrans 13986
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem bj-nntrans
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3516 . . 3  |-  A. x  e.  (/)  x  C_  (/)
2 df-suc 4356 . . . . . . 7  |-  suc  z  =  ( z  u. 
{ z } )
32eleq2i 2237 . . . . . 6  |-  ( x  e.  suc  z  <->  x  e.  ( z  u.  {
z } ) )
4 elun 3268 . . . . . . 7  |-  ( x  e.  ( z  u. 
{ z } )  <-> 
( x  e.  z  \/  x  e.  {
z } ) )
5 sssucid 4400 . . . . . . . . . 10  |-  z  C_  suc  z
6 sstr2 3154 . . . . . . . . . 10  |-  ( x 
C_  z  ->  (
z  C_  suc  z  ->  x  C_  suc  z ) )
75, 6mpi 15 . . . . . . . . 9  |-  ( x 
C_  z  ->  x  C_ 
suc  z )
87imim2i 12 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  z  ->  x  C_  suc  z ) )
9 elsni 3601 . . . . . . . . . 10  |-  ( x  e.  { z }  ->  x  =  z )
109, 5eqsstrdi 3199 . . . . . . . . 9  |-  ( x  e.  { z }  ->  x  C_  suc  z )
1110a1i 9 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  {
z }  ->  x  C_ 
suc  z ) )
128, 11jaod 712 . . . . . . 7  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( ( x  e.  z  \/  x  e. 
{ z } )  ->  x  C_  suc  z ) )
134, 12syl5bi 151 . . . . . 6  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  ( z  u.  { z } )  ->  x  C_ 
suc  z ) )
143, 13syl5bi 151 . . . . 5  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  suc  z  ->  x  C_  suc  z ) )
1514ralimi2 2530 . . . 4  |-  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z )
1615rgenw 2525 . . 3  |-  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
)
17 bdcv 13883 . . . . . 6  |- BOUNDED  y
1817bdss 13899 . . . . 5  |- BOUNDED  x  C_  y
1918ax-bdal 13853 . . . 4  |- BOUNDED  A. x  e.  y  x  C_  y
20 nfv 1521 . . . 4  |-  F/ y A. x  e.  (/)  x  C_  (/)
21 nfv 1521 . . . 4  |-  F/ y A. x  e.  z  x  C_  z
22 nfv 1521 . . . 4  |-  F/ y A. x  e.  suc  z x  C_  suc  z
23 sseq2 3171 . . . . . 6  |-  ( y  =  (/)  ->  ( x 
C_  y  <->  x  C_  (/) ) )
2423raleqbi1dv 2673 . . . . 5  |-  ( y  =  (/)  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  (/)  x  C_  (/) ) )
2524biimprd 157 . . . 4  |-  ( y  =  (/)  ->  ( A. x  e.  (/)  x  C_  (/) 
->  A. x  e.  y  x  C_  y )
)
26 sseq2 3171 . . . . . 6  |-  ( y  =  z  ->  (
x  C_  y  <->  x  C_  z
) )
2726raleqbi1dv 2673 . . . . 5  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  z  x  C_  z
) )
2827biimpd 143 . . . 4  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  z  x  C_  z
) )
29 sseq2 3171 . . . . . 6  |-  ( y  =  suc  z  -> 
( x  C_  y  <->  x 
C_  suc  z )
)
3029raleqbi1dv 2673 . . . . 5  |-  ( y  =  suc  z  -> 
( A. x  e.  y  x  C_  y  <->  A. x  e.  suc  z
x  C_  suc  z ) )
3130biimprd 157 . . . 4  |-  ( y  =  suc  z  -> 
( A. x  e. 
suc  z x  C_  suc  z  ->  A. x  e.  y  x  C_  y
) )
32 nfcv 2312 . . . 4  |-  F/_ y A
33 nfv 1521 . . . 4  |-  F/ y A. x  e.  A  x  C_  A
34 sseq2 3171 . . . . . 6  |-  ( y  =  A  ->  (
x  C_  y  <->  x  C_  A
) )
3534raleqbi1dv 2673 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  A  x  C_  A
) )
3635biimpd 143 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  A  x  C_  A
) )
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 13983 . . 3  |-  ( ( A. x  e.  (/)  x  C_  (/)  /\  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
) )  ->  ( A  e.  om  ->  A. x  e.  A  x 
C_  A ) )
381, 16, 37mp2an 424 . 2  |-  ( A  e.  om  ->  A. x  e.  A  x  C_  A
)
39 nfv 1521 . . 3  |-  F/ x  B  C_  A
40 sseq1 3170 . . 3  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
4139, 40rspc 2828 . 2  |-  ( B  e.  A  ->  ( A. x  e.  A  x  C_  A  ->  B  C_  A ) )
4238, 41syl5com 29 1  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdal 13853  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-nntrans2  13987  bj-nnelirr  13988  bj-nnen2lp  13989
  Copyright terms: Public domain W3C validator