Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans Unicode version

Theorem bj-nntrans 11490
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem bj-nntrans
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3379 . . 3  |-  A. x  e.  (/)  x  C_  (/)
2 df-suc 4189 . . . . . . 7  |-  suc  z  =  ( z  u. 
{ z } )
32eleq2i 2154 . . . . . 6  |-  ( x  e.  suc  z  <->  x  e.  ( z  u.  {
z } ) )
4 elun 3139 . . . . . . 7  |-  ( x  e.  ( z  u. 
{ z } )  <-> 
( x  e.  z  \/  x  e.  {
z } ) )
5 sssucid 4233 . . . . . . . . . 10  |-  z  C_  suc  z
6 sstr2 3030 . . . . . . . . . 10  |-  ( x 
C_  z  ->  (
z  C_  suc  z  ->  x  C_  suc  z ) )
75, 6mpi 15 . . . . . . . . 9  |-  ( x 
C_  z  ->  x  C_ 
suc  z )
87imim2i 12 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  z  ->  x  C_  suc  z ) )
9 elsni 3459 . . . . . . . . . 10  |-  ( x  e.  { z }  ->  x  =  z )
109, 5syl6eqss 3074 . . . . . . . . 9  |-  ( x  e.  { z }  ->  x  C_  suc  z )
1110a1i 9 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  {
z }  ->  x  C_ 
suc  z ) )
128, 11jaod 672 . . . . . . 7  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( ( x  e.  z  \/  x  e. 
{ z } )  ->  x  C_  suc  z ) )
134, 12syl5bi 150 . . . . . 6  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  ( z  u.  { z } )  ->  x  C_ 
suc  z ) )
143, 13syl5bi 150 . . . . 5  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  suc  z  ->  x  C_  suc  z ) )
1514ralimi2 2435 . . . 4  |-  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z )
1615rgenw 2430 . . 3  |-  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
)
17 bdcv 11383 . . . . . 6  |- BOUNDED  y
1817bdss 11399 . . . . 5  |- BOUNDED  x  C_  y
1918ax-bdal 11353 . . . 4  |- BOUNDED  A. x  e.  y  x  C_  y
20 nfv 1466 . . . 4  |-  F/ y A. x  e.  (/)  x  C_  (/)
21 nfv 1466 . . . 4  |-  F/ y A. x  e.  z  x  C_  z
22 nfv 1466 . . . 4  |-  F/ y A. x  e.  suc  z x  C_  suc  z
23 sseq2 3046 . . . . . 6  |-  ( y  =  (/)  ->  ( x 
C_  y  <->  x  C_  (/) ) )
2423raleqbi1dv 2570 . . . . 5  |-  ( y  =  (/)  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  (/)  x  C_  (/) ) )
2524biimprd 156 . . . 4  |-  ( y  =  (/)  ->  ( A. x  e.  (/)  x  C_  (/) 
->  A. x  e.  y  x  C_  y )
)
26 sseq2 3046 . . . . . 6  |-  ( y  =  z  ->  (
x  C_  y  <->  x  C_  z
) )
2726raleqbi1dv 2570 . . . . 5  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  z  x  C_  z
) )
2827biimpd 142 . . . 4  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  z  x  C_  z
) )
29 sseq2 3046 . . . . . 6  |-  ( y  =  suc  z  -> 
( x  C_  y  <->  x 
C_  suc  z )
)
3029raleqbi1dv 2570 . . . . 5  |-  ( y  =  suc  z  -> 
( A. x  e.  y  x  C_  y  <->  A. x  e.  suc  z
x  C_  suc  z ) )
3130biimprd 156 . . . 4  |-  ( y  =  suc  z  -> 
( A. x  e. 
suc  z x  C_  suc  z  ->  A. x  e.  y  x  C_  y
) )
32 nfcv 2228 . . . 4  |-  F/_ y A
33 nfv 1466 . . . 4  |-  F/ y A. x  e.  A  x  C_  A
34 sseq2 3046 . . . . . 6  |-  ( y  =  A  ->  (
x  C_  y  <->  x  C_  A
) )
3534raleqbi1dv 2570 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  A  x  C_  A
) )
3635biimpd 142 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  A  x  C_  A
) )
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 11487 . . 3  |-  ( ( A. x  e.  (/)  x  C_  (/)  /\  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
) )  ->  ( A  e.  om  ->  A. x  e.  A  x 
C_  A ) )
381, 16, 37mp2an 417 . 2  |-  ( A  e.  om  ->  A. x  e.  A  x  C_  A
)
39 nfv 1466 . . 3  |-  F/ x  B  C_  A
40 sseq1 3045 . . 3  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
4139, 40rspc 2716 . 2  |-  ( B  e.  A  ->  ( A. x  e.  A  x  C_  A  ->  B  C_  A ) )
4238, 41syl5com 29 1  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664    = wceq 1289    e. wcel 1438   A.wral 2359    u. cun 2995    C_ wss 2997   (/)c0 3284   {csn 3441   suc csuc 4183   omcom 4395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-nul 3957  ax-pr 4027  ax-un 4251  ax-bd0 11348  ax-bdor 11351  ax-bdal 11353  ax-bdex 11354  ax-bdeq 11355  ax-bdel 11356  ax-bdsb 11357  ax-bdsep 11419  ax-infvn 11480
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-sn 3447  df-pr 3448  df-uni 3649  df-int 3684  df-suc 4189  df-iom 4396  df-bdc 11376  df-bj-ind 11466
This theorem is referenced by:  bj-nntrans2  11491  bj-nnelirr  11492  bj-nnen2lp  11493
  Copyright terms: Public domain W3C validator