Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans | Unicode version |
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nntrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 3516 | . . 3 | |
2 | df-suc 4356 | . . . . . . 7 | |
3 | 2 | eleq2i 2237 | . . . . . 6 |
4 | elun 3268 | . . . . . . 7 | |
5 | sssucid 4400 | . . . . . . . . . 10 | |
6 | sstr2 3154 | . . . . . . . . . 10 | |
7 | 5, 6 | mpi 15 | . . . . . . . . 9 |
8 | 7 | imim2i 12 | . . . . . . . 8 |
9 | elsni 3601 | . . . . . . . . . 10 | |
10 | 9, 5 | eqsstrdi 3199 | . . . . . . . . 9 |
11 | 10 | a1i 9 | . . . . . . . 8 |
12 | 8, 11 | jaod 712 | . . . . . . 7 |
13 | 4, 12 | syl5bi 151 | . . . . . 6 |
14 | 3, 13 | syl5bi 151 | . . . . 5 |
15 | 14 | ralimi2 2530 | . . . 4 |
16 | 15 | rgenw 2525 | . . 3 |
17 | bdcv 13883 | . . . . . 6 BOUNDED | |
18 | 17 | bdss 13899 | . . . . 5 BOUNDED |
19 | 18 | ax-bdal 13853 | . . . 4 BOUNDED |
20 | nfv 1521 | . . . 4 | |
21 | nfv 1521 | . . . 4 | |
22 | nfv 1521 | . . . 4 | |
23 | sseq2 3171 | . . . . . 6 | |
24 | 23 | raleqbi1dv 2673 | . . . . 5 |
25 | 24 | biimprd 157 | . . . 4 |
26 | sseq2 3171 | . . . . . 6 | |
27 | 26 | raleqbi1dv 2673 | . . . . 5 |
28 | 27 | biimpd 143 | . . . 4 |
29 | sseq2 3171 | . . . . . 6 | |
30 | 29 | raleqbi1dv 2673 | . . . . 5 |
31 | 30 | biimprd 157 | . . . 4 |
32 | nfcv 2312 | . . . 4 | |
33 | nfv 1521 | . . . 4 | |
34 | sseq2 3171 | . . . . . 6 | |
35 | 34 | raleqbi1dv 2673 | . . . . 5 |
36 | 35 | biimpd 143 | . . . 4 |
37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 13983 | . . 3 |
38 | 1, 16, 37 | mp2an 424 | . 2 |
39 | nfv 1521 | . . 3 | |
40 | sseq1 3170 | . . 3 | |
41 | 39, 40 | rspc 2828 | . 2 |
42 | 38, 41 | syl5com 29 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wceq 1348 wcel 2141 wral 2448 cun 3119 wss 3121 c0 3414 csn 3583 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-nntrans2 13987 bj-nnelirr 13988 bj-nnen2lp 13989 |
Copyright terms: Public domain | W3C validator |