| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans | Unicode version | ||
| Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nntrans |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 3593 |
. . 3
| |
| 2 | df-suc 4462 |
. . . . . . 7
| |
| 3 | 2 | eleq2i 2296 |
. . . . . 6
|
| 4 | elun 3345 |
. . . . . . 7
| |
| 5 | sssucid 4506 |
. . . . . . . . . 10
| |
| 6 | sstr2 3231 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mpi 15 |
. . . . . . . . 9
|
| 8 | 7 | imim2i 12 |
. . . . . . . 8
|
| 9 | elsni 3684 |
. . . . . . . . . 10
| |
| 10 | 9, 5 | eqsstrdi 3276 |
. . . . . . . . 9
|
| 11 | 10 | a1i 9 |
. . . . . . . 8
|
| 12 | 8, 11 | jaod 722 |
. . . . . . 7
|
| 13 | 4, 12 | biimtrid 152 |
. . . . . 6
|
| 14 | 3, 13 | biimtrid 152 |
. . . . 5
|
| 15 | 14 | ralimi2 2590 |
. . . 4
|
| 16 | 15 | rgenw 2585 |
. . 3
|
| 17 | bdcv 16211 |
. . . . . 6
| |
| 18 | 17 | bdss 16227 |
. . . . 5
|
| 19 | 18 | ax-bdal 16181 |
. . . 4
|
| 20 | nfv 1574 |
. . . 4
| |
| 21 | nfv 1574 |
. . . 4
| |
| 22 | nfv 1574 |
. . . 4
| |
| 23 | sseq2 3248 |
. . . . . 6
| |
| 24 | 23 | raleqbi1dv 2740 |
. . . . 5
|
| 25 | 24 | biimprd 158 |
. . . 4
|
| 26 | sseq2 3248 |
. . . . . 6
| |
| 27 | 26 | raleqbi1dv 2740 |
. . . . 5
|
| 28 | 27 | biimpd 144 |
. . . 4
|
| 29 | sseq2 3248 |
. . . . . 6
| |
| 30 | 29 | raleqbi1dv 2740 |
. . . . 5
|
| 31 | 30 | biimprd 158 |
. . . 4
|
| 32 | nfcv 2372 |
. . . 4
| |
| 33 | nfv 1574 |
. . . 4
| |
| 34 | sseq2 3248 |
. . . . . 6
| |
| 35 | 34 | raleqbi1dv 2740 |
. . . . 5
|
| 36 | 35 | biimpd 144 |
. . . 4
|
| 37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 16311 |
. . 3
|
| 38 | 1, 16, 37 | mp2an 426 |
. 2
|
| 39 | nfv 1574 |
. . 3
| |
| 40 | sseq1 3247 |
. . 3
| |
| 41 | 39, 40 | rspc 2901 |
. 2
|
| 42 | 38, 41 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdal 16181 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-infvn 16304 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-nntrans2 16315 bj-nnelirr 16316 bj-nnen2lp 16317 |
| Copyright terms: Public domain | W3C validator |