Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nntrans Unicode version

Theorem bj-nntrans 16086
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nntrans  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem bj-nntrans
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3570 . . 3  |-  A. x  e.  (/)  x  C_  (/)
2 df-suc 4436 . . . . . . 7  |-  suc  z  =  ( z  u. 
{ z } )
32eleq2i 2274 . . . . . 6  |-  ( x  e.  suc  z  <->  x  e.  ( z  u.  {
z } ) )
4 elun 3322 . . . . . . 7  |-  ( x  e.  ( z  u. 
{ z } )  <-> 
( x  e.  z  \/  x  e.  {
z } ) )
5 sssucid 4480 . . . . . . . . . 10  |-  z  C_  suc  z
6 sstr2 3208 . . . . . . . . . 10  |-  ( x 
C_  z  ->  (
z  C_  suc  z  ->  x  C_  suc  z ) )
75, 6mpi 15 . . . . . . . . 9  |-  ( x 
C_  z  ->  x  C_ 
suc  z )
87imim2i 12 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  z  ->  x  C_  suc  z ) )
9 elsni 3661 . . . . . . . . . 10  |-  ( x  e.  { z }  ->  x  =  z )
109, 5eqsstrdi 3253 . . . . . . . . 9  |-  ( x  e.  { z }  ->  x  C_  suc  z )
1110a1i 9 . . . . . . . 8  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  {
z }  ->  x  C_ 
suc  z ) )
128, 11jaod 719 . . . . . . 7  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( ( x  e.  z  \/  x  e. 
{ z } )  ->  x  C_  suc  z ) )
134, 12biimtrid 152 . . . . . 6  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  ( z  u.  { z } )  ->  x  C_ 
suc  z ) )
143, 13biimtrid 152 . . . . 5  |-  ( ( x  e.  z  ->  x  C_  z )  -> 
( x  e.  suc  z  ->  x  C_  suc  z ) )
1514ralimi2 2568 . . . 4  |-  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z )
1615rgenw 2563 . . 3  |-  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
)
17 bdcv 15983 . . . . . 6  |- BOUNDED  y
1817bdss 15999 . . . . 5  |- BOUNDED  x  C_  y
1918ax-bdal 15953 . . . 4  |- BOUNDED  A. x  e.  y  x  C_  y
20 nfv 1552 . . . 4  |-  F/ y A. x  e.  (/)  x  C_  (/)
21 nfv 1552 . . . 4  |-  F/ y A. x  e.  z  x  C_  z
22 nfv 1552 . . . 4  |-  F/ y A. x  e.  suc  z x  C_  suc  z
23 sseq2 3225 . . . . . 6  |-  ( y  =  (/)  ->  ( x 
C_  y  <->  x  C_  (/) ) )
2423raleqbi1dv 2717 . . . . 5  |-  ( y  =  (/)  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  (/)  x  C_  (/) ) )
2524biimprd 158 . . . 4  |-  ( y  =  (/)  ->  ( A. x  e.  (/)  x  C_  (/) 
->  A. x  e.  y  x  C_  y )
)
26 sseq2 3225 . . . . . 6  |-  ( y  =  z  ->  (
x  C_  y  <->  x  C_  z
) )
2726raleqbi1dv 2717 . . . . 5  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  z  x  C_  z
) )
2827biimpd 144 . . . 4  |-  ( y  =  z  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  z  x  C_  z
) )
29 sseq2 3225 . . . . . 6  |-  ( y  =  suc  z  -> 
( x  C_  y  <->  x 
C_  suc  z )
)
3029raleqbi1dv 2717 . . . . 5  |-  ( y  =  suc  z  -> 
( A. x  e.  y  x  C_  y  <->  A. x  e.  suc  z
x  C_  suc  z ) )
3130biimprd 158 . . . 4  |-  ( y  =  suc  z  -> 
( A. x  e. 
suc  z x  C_  suc  z  ->  A. x  e.  y  x  C_  y
) )
32 nfcv 2350 . . . 4  |-  F/_ y A
33 nfv 1552 . . . 4  |-  F/ y A. x  e.  A  x  C_  A
34 sseq2 3225 . . . . . 6  |-  ( y  =  A  ->  (
x  C_  y  <->  x  C_  A
) )
3534raleqbi1dv 2717 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  <->  A. x  e.  A  x  C_  A
) )
3635biimpd 144 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  y  x  C_  y  ->  A. x  e.  A  x  C_  A
) )
3719, 20, 21, 22, 25, 28, 31, 32, 33, 36bj-bdfindisg 16083 . . 3  |-  ( ( A. x  e.  (/)  x  C_  (/)  /\  A. z  e.  om  ( A. x  e.  z  x  C_  z  ->  A. x  e.  suc  z x  C_  suc  z
) )  ->  ( A  e.  om  ->  A. x  e.  A  x 
C_  A ) )
381, 16, 37mp2an 426 . 2  |-  ( A  e.  om  ->  A. x  e.  A  x  C_  A
)
39 nfv 1552 . . 3  |-  F/ x  B  C_  A
40 sseq1 3224 . . 3  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
4139, 40rspc 2878 . 2  |-  ( B  e.  A  ->  ( A. x  e.  A  x  C_  A  ->  B  C_  A ) )
4238, 41syl5com 29 1  |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-infvn 16076
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-nntrans2  16087  bj-nnelirr  16088  bj-nnen2lp  16089
  Copyright terms: Public domain W3C validator