| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans | Unicode version | ||
| Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nntrans |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 3562 |
. . 3
| |
| 2 | df-suc 4419 |
. . . . . . 7
| |
| 3 | 2 | eleq2i 2272 |
. . . . . 6
|
| 4 | elun 3314 |
. . . . . . 7
| |
| 5 | sssucid 4463 |
. . . . . . . . . 10
| |
| 6 | sstr2 3200 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | mpi 15 |
. . . . . . . . 9
|
| 8 | 7 | imim2i 12 |
. . . . . . . 8
|
| 9 | elsni 3651 |
. . . . . . . . . 10
| |
| 10 | 9, 5 | eqsstrdi 3245 |
. . . . . . . . 9
|
| 11 | 10 | a1i 9 |
. . . . . . . 8
|
| 12 | 8, 11 | jaod 719 |
. . . . . . 7
|
| 13 | 4, 12 | biimtrid 152 |
. . . . . 6
|
| 14 | 3, 13 | biimtrid 152 |
. . . . 5
|
| 15 | 14 | ralimi2 2566 |
. . . 4
|
| 16 | 15 | rgenw 2561 |
. . 3
|
| 17 | bdcv 15821 |
. . . . . 6
| |
| 18 | 17 | bdss 15837 |
. . . . 5
|
| 19 | 18 | ax-bdal 15791 |
. . . 4
|
| 20 | nfv 1551 |
. . . 4
| |
| 21 | nfv 1551 |
. . . 4
| |
| 22 | nfv 1551 |
. . . 4
| |
| 23 | sseq2 3217 |
. . . . . 6
| |
| 24 | 23 | raleqbi1dv 2714 |
. . . . 5
|
| 25 | 24 | biimprd 158 |
. . . 4
|
| 26 | sseq2 3217 |
. . . . . 6
| |
| 27 | 26 | raleqbi1dv 2714 |
. . . . 5
|
| 28 | 27 | biimpd 144 |
. . . 4
|
| 29 | sseq2 3217 |
. . . . . 6
| |
| 30 | 29 | raleqbi1dv 2714 |
. . . . 5
|
| 31 | 30 | biimprd 158 |
. . . 4
|
| 32 | nfcv 2348 |
. . . 4
| |
| 33 | nfv 1551 |
. . . 4
| |
| 34 | sseq2 3217 |
. . . . . 6
| |
| 35 | 34 | raleqbi1dv 2714 |
. . . . 5
|
| 36 | 35 | biimpd 144 |
. . . 4
|
| 37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 15921 |
. . 3
|
| 38 | 1, 16, 37 | mp2an 426 |
. 2
|
| 39 | nfv 1551 |
. . 3
| |
| 40 | sseq1 3216 |
. . 3
| |
| 41 | 39, 40 | rspc 2871 |
. 2
|
| 42 | 38, 41 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4171 ax-pr 4254 ax-un 4481 ax-bd0 15786 ax-bdor 15789 ax-bdal 15791 ax-bdex 15792 ax-bdeq 15793 ax-bdel 15794 ax-bdsb 15795 ax-bdsep 15857 ax-infvn 15914 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 df-bdc 15814 df-bj-ind 15900 |
| This theorem is referenced by: bj-nntrans2 15925 bj-nnelirr 15926 bj-nnen2lp 15927 |
| Copyright terms: Public domain | W3C validator |