Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans | Unicode version |
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nntrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 3522 | . . 3 | |
2 | df-suc 4365 | . . . . . . 7 | |
3 | 2 | eleq2i 2242 | . . . . . 6 |
4 | elun 3274 | . . . . . . 7 | |
5 | sssucid 4409 | . . . . . . . . . 10 | |
6 | sstr2 3160 | . . . . . . . . . 10 | |
7 | 5, 6 | mpi 15 | . . . . . . . . 9 |
8 | 7 | imim2i 12 | . . . . . . . 8 |
9 | elsni 3607 | . . . . . . . . . 10 | |
10 | 9, 5 | eqsstrdi 3205 | . . . . . . . . 9 |
11 | 10 | a1i 9 | . . . . . . . 8 |
12 | 8, 11 | jaod 717 | . . . . . . 7 |
13 | 4, 12 | biimtrid 152 | . . . . . 6 |
14 | 3, 13 | biimtrid 152 | . . . . 5 |
15 | 14 | ralimi2 2535 | . . . 4 |
16 | 15 | rgenw 2530 | . . 3 |
17 | bdcv 14158 | . . . . . 6 BOUNDED | |
18 | 17 | bdss 14174 | . . . . 5 BOUNDED |
19 | 18 | ax-bdal 14128 | . . . 4 BOUNDED |
20 | nfv 1526 | . . . 4 | |
21 | nfv 1526 | . . . 4 | |
22 | nfv 1526 | . . . 4 | |
23 | sseq2 3177 | . . . . . 6 | |
24 | 23 | raleqbi1dv 2678 | . . . . 5 |
25 | 24 | biimprd 158 | . . . 4 |
26 | sseq2 3177 | . . . . . 6 | |
27 | 26 | raleqbi1dv 2678 | . . . . 5 |
28 | 27 | biimpd 144 | . . . 4 |
29 | sseq2 3177 | . . . . . 6 | |
30 | 29 | raleqbi1dv 2678 | . . . . 5 |
31 | 30 | biimprd 158 | . . . 4 |
32 | nfcv 2317 | . . . 4 | |
33 | nfv 1526 | . . . 4 | |
34 | sseq2 3177 | . . . . . 6 | |
35 | 34 | raleqbi1dv 2678 | . . . . 5 |
36 | 35 | biimpd 144 | . . . 4 |
37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 14258 | . . 3 |
38 | 1, 16, 37 | mp2an 426 | . 2 |
39 | nfv 1526 | . . 3 | |
40 | sseq1 3176 | . . 3 | |
41 | 39, 40 | rspc 2833 | . 2 |
42 | 38, 41 | syl5com 29 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 708 wceq 1353 wcel 2146 wral 2453 cun 3125 wss 3127 c0 3420 csn 3589 csuc 4359 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-nul 4124 ax-pr 4203 ax-un 4427 ax-bd0 14123 ax-bdor 14126 ax-bdal 14128 ax-bdex 14129 ax-bdeq 14130 ax-bdel 14131 ax-bdsb 14132 ax-bdsep 14194 ax-infvn 14251 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-bdc 14151 df-bj-ind 14237 |
This theorem is referenced by: bj-nntrans2 14262 bj-nnelirr 14263 bj-nnen2lp 14264 |
Copyright terms: Public domain | W3C validator |