Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nntrans | Unicode version |
Description: A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nntrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral0 3510 | . . 3 | |
2 | df-suc 4349 | . . . . . . 7 | |
3 | 2 | eleq2i 2233 | . . . . . 6 |
4 | elun 3263 | . . . . . . 7 | |
5 | sssucid 4393 | . . . . . . . . . 10 | |
6 | sstr2 3149 | . . . . . . . . . 10 | |
7 | 5, 6 | mpi 15 | . . . . . . . . 9 |
8 | 7 | imim2i 12 | . . . . . . . 8 |
9 | elsni 3594 | . . . . . . . . . 10 | |
10 | 9, 5 | eqsstrdi 3194 | . . . . . . . . 9 |
11 | 10 | a1i 9 | . . . . . . . 8 |
12 | 8, 11 | jaod 707 | . . . . . . 7 |
13 | 4, 12 | syl5bi 151 | . . . . . 6 |
14 | 3, 13 | syl5bi 151 | . . . . 5 |
15 | 14 | ralimi2 2526 | . . . 4 |
16 | 15 | rgenw 2521 | . . 3 |
17 | bdcv 13730 | . . . . . 6 BOUNDED | |
18 | 17 | bdss 13746 | . . . . 5 BOUNDED |
19 | 18 | ax-bdal 13700 | . . . 4 BOUNDED |
20 | nfv 1516 | . . . 4 | |
21 | nfv 1516 | . . . 4 | |
22 | nfv 1516 | . . . 4 | |
23 | sseq2 3166 | . . . . . 6 | |
24 | 23 | raleqbi1dv 2669 | . . . . 5 |
25 | 24 | biimprd 157 | . . . 4 |
26 | sseq2 3166 | . . . . . 6 | |
27 | 26 | raleqbi1dv 2669 | . . . . 5 |
28 | 27 | biimpd 143 | . . . 4 |
29 | sseq2 3166 | . . . . . 6 | |
30 | 29 | raleqbi1dv 2669 | . . . . 5 |
31 | 30 | biimprd 157 | . . . 4 |
32 | nfcv 2308 | . . . 4 | |
33 | nfv 1516 | . . . 4 | |
34 | sseq2 3166 | . . . . . 6 | |
35 | 34 | raleqbi1dv 2669 | . . . . 5 |
36 | 35 | biimpd 143 | . . . 4 |
37 | 19, 20, 21, 22, 25, 28, 31, 32, 33, 36 | bj-bdfindisg 13830 | . . 3 |
38 | 1, 16, 37 | mp2an 423 | . 2 |
39 | nfv 1516 | . . 3 | |
40 | sseq1 3165 | . . 3 | |
41 | 39, 40 | rspc 2824 | . 2 |
42 | 38, 41 | syl5com 29 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 wral 2444 cun 3114 wss 3116 c0 3409 csn 3576 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-nntrans2 13834 bj-nnelirr 13835 bj-nnen2lp 13836 |
Copyright terms: Public domain | W3C validator |