ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax6blem Unicode version

Theorem ax6blem 1638
Description: If  x is not free in  ph, it is not free in  -.  ph. This theorem doesn't use ax6b 1639 compared to hbnt 1641. (Contributed by GD, 27-Jan-2018.)
Hypothesis
Ref Expression
ax6blem.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
ax6blem  |-  ( -. 
ph  ->  A. x  -.  ph )

Proof of Theorem ax6blem
StepHypRef Expression
1 ax6blem.1 . . . 4  |-  ( ph  ->  A. x ph )
2 id 19 . . . 4  |-  ( ph  ->  ph )
31, 2exlimih 1581 . . 3  |-  ( E. x ph  ->  ph )
43con3i 622 . 2  |-  ( -. 
ph  ->  -.  E. x ph )
5 alnex 1487 . 2  |-  ( A. x  -.  ph  <->  -.  E. x ph )
64, 5sylibr 133 1  |-  ( -. 
ph  ->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  ax6b  1639
  Copyright terms: Public domain W3C validator