ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax6blem GIF version

Theorem ax6blem 1650
Description: If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1651 compared to hbnt 1653. (Contributed by GD, 27-Jan-2018.)
Hypothesis
Ref Expression
ax6blem.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
ax6blem 𝜑 → ∀𝑥 ¬ 𝜑)

Proof of Theorem ax6blem
StepHypRef Expression
1 ax6blem.1 . . . 4 (𝜑 → ∀𝑥𝜑)
2 id 19 . . . 4 (𝜑𝜑)
31, 2exlimih 1593 . . 3 (∃𝑥𝜑𝜑)
43con3i 632 . 2 𝜑 → ¬ ∃𝑥𝜑)
5 alnex 1499 . 2 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
64, 5sylibr 134 1 𝜑 → ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1351  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie2 1494
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  ax6b  1651
  Copyright terms: Public domain W3C validator