| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax6blem | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1665 compared to hbnt 1667. (Contributed by GD, 27-Jan-2018.) |
| Ref | Expression |
|---|---|
| ax6blem.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| ax6blem | ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6blem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | id 19 | . . . 4 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | exlimih 1607 | . . 3 ⊢ (∃𝑥𝜑 → 𝜑) |
| 4 | 3 | con3i 633 | . 2 ⊢ (¬ 𝜑 → ¬ ∃𝑥𝜑) |
| 5 | alnex 1513 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: ax6b 1665 |
| Copyright terms: Public domain | W3C validator |