ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnal Unicode version

Theorem nnal 1629
Description: The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
nnal  |-  ( -. 
-.  A. x ph  ->  A. x  -.  -.  ph )

Proof of Theorem nnal
StepHypRef Expression
1 exnalim 1626 . . 3  |-  ( E. x  -.  ph  ->  -. 
A. x ph )
21con3i 622 . 2  |-  ( -. 
-.  A. x ph  ->  -. 
E. x  -.  ph )
3 alnex 1479 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
42, 3sylibr 133 1  |-  ( -. 
-.  A. x ph  ->  A. x  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1333   E.wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441
This theorem is referenced by:  bj-stal  13282
  Copyright terms: Public domain W3C validator