| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnal | Unicode version | ||
| Description: The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| nnal | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exnalim 1660 | 
. . 3
 | |
| 2 | 1 | con3i 633 | 
. 2
 | 
| 3 | alnex 1513 | 
. 2
 | |
| 4 | 2, 3 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 | 
| This theorem is referenced by: bj-stal 15395 | 
| Copyright terms: Public domain | W3C validator |