ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax6evr Unicode version

Theorem ax6evr 1685
Description: A commuted form of a9ev 1677. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr  |-  E. x  y  =  x
Distinct variable group:    x, y

Proof of Theorem ax6evr
StepHypRef Expression
1 a9ev 1677 . 2  |-  E. x  x  =  y
2 equcomi 1684 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2eximii 1582 1  |-  E. x  y  =  x
Colors of variables: wff set class
Syntax hints:   E.wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator