ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax6evr Unicode version

Theorem ax6evr 1705
Description: A commuted form of a9ev 1697. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr  |-  E. x  y  =  x
Distinct variable group:    x, y

Proof of Theorem ax6evr
StepHypRef Expression
1 a9ev 1697 . 2  |-  E. x  x  =  y
2 equcomi 1704 . 2  |-  ( x  =  y  ->  y  =  x )
31, 2eximii 1602 1  |-  E. x  y  =  x
Colors of variables: wff set class
Syntax hints:   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator