ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcom Unicode version

Theorem equcom 1730
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
equcom  |-  ( x  =  y  <->  y  =  x )

Proof of Theorem equcom
StepHypRef Expression
1 equcomi 1728 . 2  |-  ( x  =  y  ->  y  =  x )
2 equcomi 1728 . 2  |-  ( y  =  x  ->  x  =  y )
31, 2impbii 126 1  |-  ( x  =  y  <->  y  =  x )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1473  ax-ie2 1518  ax-8 1528  ax-17 1550  ax-i9 1554
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  equcomd  1731  sbal1yz  2030  dveeq1  2048  eu1  2080  reu7  2975  reu8  2976  dfdif3  3291  iunid  3997  copsexg  4306  opelopabsbALT  4323  dtruex  4625  opeliunxp  4748  relop  4846  dmi  4912  opabresid  5031  intirr  5088  cnvi  5106  coi1  5217  brprcneu  5592  f1oiso  5918  fvmpopr2d  6105  qsid  6710  mapsnen  6927  suplocsrlem  7956  summodc  11809  bezoutlemle  12444  cnmptid  14868
  Copyright terms: Public domain W3C validator