| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | Unicode version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1727 |
. 2
| |
| 2 | equcomi 1727 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1730 sbal1yz 2029 dveeq1 2047 eu1 2079 reu7 2968 reu8 2969 dfdif3 3283 iunid 3983 copsexg 4289 opelopabsbALT 4306 dtruex 4608 opeliunxp 4731 relop 4829 dmi 4894 opabresid 5013 intirr 5070 cnvi 5088 coi1 5199 brprcneu 5571 f1oiso 5897 fvmpopr2d 6084 qsid 6689 mapsnen 6905 suplocsrlem 7923 summodc 11727 bezoutlemle 12362 cnmptid 14786 |
| Copyright terms: Public domain | W3C validator |