Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcom | Unicode version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1697 | . 2 | |
2 | equcomi 1697 | . 2 | |
3 | 1, 2 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie2 1487 ax-8 1497 ax-17 1519 ax-i9 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: equcomd 1700 sbal1yz 1994 dveeq1 2012 eu1 2044 reu7 2925 reu8 2926 dfdif3 3237 iunid 3928 copsexg 4229 opelopabsbALT 4244 dtruex 4543 opeliunxp 4666 relop 4761 dmi 4826 opabresid 4944 intirr 4997 cnvi 5015 coi1 5126 brprcneu 5489 f1oiso 5805 qsid 6578 mapsnen 6789 suplocsrlem 7770 summodc 11346 bezoutlemle 11963 cnmptid 13075 |
Copyright terms: Public domain | W3C validator |