| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | Unicode version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1728 |
. 2
| |
| 2 | equcomi 1728 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1731 sbal1yz 2030 dveeq1 2048 eu1 2080 reu7 2975 reu8 2976 dfdif3 3291 iunid 3997 copsexg 4306 opelopabsbALT 4323 dtruex 4625 opeliunxp 4748 relop 4846 dmi 4912 opabresid 5031 intirr 5088 cnvi 5106 coi1 5217 brprcneu 5592 f1oiso 5918 fvmpopr2d 6105 qsid 6710 mapsnen 6927 suplocsrlem 7956 summodc 11809 bezoutlemle 12444 cnmptid 14868 |
| Copyright terms: Public domain | W3C validator |