Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcom | Unicode version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1702 | . 2 | |
2 | equcomi 1702 | . 2 | |
3 | 1, 2 | impbii 126 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ie2 1492 ax-8 1502 ax-17 1524 ax-i9 1528 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: equcomd 1705 sbal1yz 1999 dveeq1 2017 eu1 2049 reu7 2930 reu8 2931 dfdif3 3243 iunid 3937 copsexg 4238 opelopabsbALT 4253 dtruex 4552 opeliunxp 4675 relop 4770 dmi 4835 opabresid 4953 intirr 5007 cnvi 5025 coi1 5136 brprcneu 5500 f1oiso 5817 qsid 6590 mapsnen 6801 suplocsrlem 7782 summodc 11359 bezoutlemle 11976 cnmptid 13352 |
Copyright terms: Public domain | W3C validator |