| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcom | Unicode version | ||
| Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 1750 |
. 2
| |
| 2 | equcomi 1750 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie2 1540 ax-8 1550 ax-17 1572 ax-i9 1576 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: equcomd 1753 sbal1yz 2052 dveeq1 2070 eu1 2102 reu7 2998 reu8 2999 dfdif3 3314 iunid 4021 copsexg 4330 opelopabsbALT 4347 dtruex 4651 opeliunxp 4774 relop 4872 dmi 4938 opabresid 5058 intirr 5115 cnvi 5133 coi1 5244 brprcneu 5620 f1oiso 5950 fvmpopr2d 6141 qsid 6747 mapsnen 6964 suplocsrlem 7995 summodc 11894 bezoutlemle 12529 cnmptid 14955 |
| Copyright terms: Public domain | W3C validator |