ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equcomi Unicode version

Theorem equcomi 1727
Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equcomi  |-  ( x  =  y  ->  y  =  x )

Proof of Theorem equcomi
StepHypRef Expression
1 equid 1724 . 2  |-  x  =  x
2 ax-8 1527 . 2  |-  ( x  =  y  ->  (
x  =  x  -> 
y  =  x ) )
31, 2mpi 15 1  |-  ( x  =  y  ->  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1472  ax-ie2 1517  ax-8 1527  ax-17 1549  ax-i9 1553
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax6evr  1728  equcom  1729  equcoms  1731  ax10  1740  cbv2h  1771  cbv2w  1773  equvini  1781  equveli  1782  equsb2  1809  drex1  1821  sbcof2  1833  aev  1835  cbvexdh  1950  rext  4259  iotaval  5243  prodmodc  11889
  Copyright terms: Public domain W3C validator