Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equcomi | Unicode version |
Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equcomi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1689 | . 2 | |
2 | ax-8 1492 | . 2 | |
3 | 1, 2 | mpi 15 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax6evr 1693 equcom 1694 equcoms 1696 ax10 1705 cbv2h 1736 cbv2w 1738 equvini 1746 equveli 1747 equsb2 1774 drex1 1786 sbcof2 1798 aev 1800 cbvexdh 1914 rext 4193 iotaval 5164 prodmodc 11519 |
Copyright terms: Public domain | W3C validator |