| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equcomi | Unicode version | ||
| Description: Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equcomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1724 |
. 2
| |
| 2 | ax-8 1527 |
. 2
| |
| 3 | 1, 2 | mpi 15 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax6evr 1728 equcom 1729 equcoms 1731 ax10 1740 cbv2h 1771 cbv2w 1773 equvini 1781 equveli 1782 equsb2 1809 drex1 1821 sbcof2 1833 aev 1835 cbvexdh 1950 rext 4259 iotaval 5243 prodmodc 11889 |
| Copyright terms: Public domain | W3C validator |