ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax6evr GIF version

Theorem ax6evr 1729
Description: A commuted form of a9ev 1721. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
Assertion
Ref Expression
ax6evr 𝑥 𝑦 = 𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem ax6evr
StepHypRef Expression
1 a9ev 1721 . 2 𝑥 𝑥 = 𝑦
2 equcomi 1728 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2eximii 1626 1 𝑥 𝑦 = 𝑥
Colors of variables: wff set class
Syntax hints:  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator