ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax9vsep Unicode version

Theorem ax9vsep 4152
Description: Derive a weakened version of ax-9 1542, where  x and  y must be distinct, from Separation ax-sep 4147 and Extensionality ax-ext 2175. In intuitionistic logic a9evsep 4151 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax9vsep  |-  -.  A. x  -.  x  =  y
Distinct variable group:    x, y

Proof of Theorem ax9vsep
StepHypRef Expression
1 a9evsep 4151 . 2  |-  E. x  x  =  y
2 exalim 1513 . 2  |-  ( E. x  x  =  y  ->  -.  A. x  -.  x  =  y
)
31, 2ax-mp 5 1  |-  -.  A. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1362    = wceq 1364   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator