ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax9vsep Unicode version

Theorem ax9vsep 4105
Description: Derive a weakened version of ax-9 1519, where  x and  y must be distinct, from Separation ax-sep 4100 and Extensionality ax-ext 2147. In intuitionistic logic a9evsep 4104 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax9vsep  |-  -.  A. x  -.  x  =  y
Distinct variable group:    x, y

Proof of Theorem ax9vsep
StepHypRef Expression
1 a9evsep 4104 . 2  |-  E. x  x  =  y
2 exalim 1490 . 2  |-  ( E. x  x  =  y  ->  -.  A. x  -.  x  =  y
)
31, 2ax-mp 5 1  |-  -.  A. x  -.  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1341    = wceq 1343   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator