Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a9evsep | Unicode version |
Description: Derive a weakened version of ax-i9 1523, where and must be distinct, from Separation ax-sep 4107 and Extensionality ax-ext 2152. The theorem also holds (ax9vsep 4112), but in intuitionistic logic is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
a9evsep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-sep 4107 | . 2 | |
2 | id 19 | . . . . . . . 8 | |
3 | 2 | biantru 300 | . . . . . . 7 |
4 | 3 | bibi2i 226 | . . . . . 6 |
5 | 4 | biimpri 132 | . . . . 5 |
6 | 5 | alimi 1448 | . . . 4 |
7 | ax-ext 2152 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | 8 | eximi 1593 | . 2 |
10 | 1, 9 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax9vsep 4112 |
Copyright terms: Public domain | W3C validator |