ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a9evsep Unicode version

Theorem a9evsep 4127
Description: Derive a weakened version of ax-i9 1530, where  x and  y must be distinct, from Separation ax-sep 4123 and Extensionality ax-ext 2159. The theorem  -.  A. x -.  x  =  y also holds (ax9vsep 4128), but in intuitionistic logic  E. x x  =  y is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
a9evsep  |-  E. x  x  =  y
Distinct variable group:    x, y

Proof of Theorem a9evsep
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ax-sep 4123 . 2  |-  E. x A. z ( z  e.  x  <->  ( z  e.  y  /\  ( z  =  z  ->  z  =  z ) ) )
2 id 19 . . . . . . . 8  |-  ( z  =  z  ->  z  =  z )
32biantru 302 . . . . . . 7  |-  ( z  e.  y  <->  ( z  e.  y  /\  (
z  =  z  -> 
z  =  z ) ) )
43bibi2i 227 . . . . . 6  |-  ( ( z  e.  x  <->  z  e.  y )  <->  ( z  e.  x  <->  ( z  e.  y  /\  ( z  =  z  ->  z  =  z ) ) ) )
54biimpri 133 . . . . 5  |-  ( ( z  e.  x  <->  ( z  e.  y  /\  (
z  =  z  -> 
z  =  z ) ) )  ->  (
z  e.  x  <->  z  e.  y ) )
65alimi 1455 . . . 4  |-  ( A. z ( z  e.  x  <->  ( z  e.  y  /\  ( z  =  z  ->  z  =  z ) ) )  ->  A. z
( z  e.  x  <->  z  e.  y ) )
7 ax-ext 2159 . . . 4  |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
86, 7syl 14 . . 3  |-  ( A. z ( z  e.  x  <->  ( z  e.  y  /\  ( z  =  z  ->  z  =  z ) ) )  ->  x  =  y )
98eximi 1600 . 2  |-  ( E. x A. z ( z  e.  x  <->  ( z  e.  y  /\  (
z  =  z  -> 
z  =  z ) ) )  ->  E. x  x  =  y )
101, 9ax-mp 5 1  |-  E. x  x  =  y
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax9vsep  4128
  Copyright terms: Public domain W3C validator