![]() |
Intuitionistic Logic Explorer Theorem List (p. 42 of 156) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cbvopabv 4101* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvopab1 4102* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvopab2 4103* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvopab1s 4104* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvopab1v 4105* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvopab2v 4106* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | csbopabg 4107* | Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | unopab 4108 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq12f 4109 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq12dva 4110* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq12dv 4111* | An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq12 4112* | An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq1 4113* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq1d 4114* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq2ia 4115 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq2i 4116 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq12i 4117 | An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq2da 4118 | Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq2dva 4119* | Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mpteq2dv 4120* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nfmpt 4121* | Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nfmpt1 4122 | Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvmptf 4123* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvmpt 4124* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cbvmptv 4125* | Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mptv 4126* | Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | wtr 4127 | Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35. |
![]() ![]() ![]() | ||
Definition | df-tr 4128 | Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4129 (which is suggestive of the word "transitive"), dftr3 4131, dftr4 4132, and dftr5 4130. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dftr2 4129* | An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dftr5 4130* | An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dftr3 4131* | An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | dftr4 4132 | An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | treq 4133 | Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trel 4134 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trel3 4135 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trss 4136 | An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trin 4137 | The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | tr0 4138 | The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
![]() ![]() ![]() | ||
Theorem | trv 4139 | The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
![]() ![]() ![]() | ||
Theorem | triun 4140* | The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | truni 4141* | The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trint 4142* | The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | trintssm 4143* | Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-coll 4144* | Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 4201 but uses a freeness hypothesis in place of one of the distinct variable conditions. (Contributed by Jim Kingdon, 23-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | repizf 4145* |
Axiom of Replacement. Axiom 7' of [Crosilla],
p. "Axioms of CZF and
IZF" (with unnecessary quantifier removed). In our context this is
not
an axiom, but a theorem proved from ax-coll 4144. It is identical to
zfrep6 4146 except for the choice of a freeness
hypothesis rather than a
disjoint variable condition between ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zfrep6 4146* |
A version of the Axiom of Replacement. Normally ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-sep 4147* |
The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p.
"Axioms of CZF and IZF" (with unnecessary quantifier removed,
and with a
![]() ![]() ![]() ![]() ![]()
The Separation Scheme is a weak form of Frege's Axiom of Comprehension,
conditioning it (with (Contributed by NM, 11-Sep-2006.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axsep2 4148* |
A less restrictive version of the Separation Scheme ax-sep 4147, where
variables ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zfauscl 4149* | Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4147, we invoke the Axiom of Extensionality (indirectly via vtocl 2814), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | bm1.3ii 4150* | Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4147. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | a9evsep 4151* |
Derive a weakened version of ax-i9 1541, where ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ax9vsep 4152* |
Derive a weakened version of ax-9 1542, where ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zfnuleu 4153* | Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2178 to strengthen the hypothesis in the form of axnul 4154). (Contributed by NM, 22-Dec-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | axnul 4154* |
The Null Set Axiom of ZF set theory: there exists a set with no
elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks,
this is presented as a separate axiom; here we show it can be derived
from Separation ax-sep 4147. This version of the Null Set Axiom tells us
that at least one empty set exists, but does not tell us that it is
unique - we need the Axiom of Extensionality to do that (see
zfnuleu 4153).
This theorem should not be referenced by any proof. Instead, use ax-nul 4155 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-nul 4155* | The Null Set Axiom of IZF set theory. It was derived as axnul 4154 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. Axiom 4 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by NM, 7-Aug-2003.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0ex 4156 | The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 4155. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
![]() ![]() ![]() ![]() | ||
Theorem | csbexga 4157 | The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | csbexa 4158 | The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nalset 4159* | No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | vnex 4160 | The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | vprc 4161 | The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | nvel 4162 | The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | inex1 4163 | Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | inex2 4164 | Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | inex1g 4165 | Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ssex 4166 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4147 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ssexi 4167 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ssexg 4168 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ssexd 4169 | A subclass of a set is a set. Deduction form of ssexg 4168. (Contributed by David Moews, 1-May-2017.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | difexg 4170 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | zfausab 4171* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rabexg 4172* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rabex 4173* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rabexd 4174* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4175. (Contributed by AV, 16-Jul-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rabex2 4175* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | rab2ex 4176* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elssabg 4177* |
Membership in a class abstraction involving a subset. Unlike elabg 2906,
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | inteximm 4178* | The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | intexr 4179 | If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | intnexr 4180 | If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | intexabim 4181 | The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | intexrabim 4182 | The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iinexgm 4183* |
The existence of an indexed union. ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | inuni 4184* |
The intersection of a union ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elpw2g 4185 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elpw2 4186 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elpwi2 4187 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pwnss 4188 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pwne 4189 | No set equals its power set. The sethood antecedent is necessary; compare pwv 3834. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | repizf2lem 4190 |
Lemma for repizf2 4191. If we have a function-like proposition
which
provides at most one value of ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | repizf2 4191* |
Replacement. This version of replacement is stronger than repizf 4145 in
the sense that ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | class2seteq 4192* | Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0elpw 4193 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0nep0 4194 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0inp0 4195 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | unidif0 4196 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iin0imm 4197* | An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iin0r 4198* | If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | intv 4199 | The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
![]() ![]() ![]() ![]() ![]() | ||
Theorem | axpweq 4200* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4203 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |