HomeHome Intuitionistic Logic Explorer
Theorem List (p. 42 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4101-4200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnbrne1 4101 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C )
 
Theoremnbrne2 4102 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
 |-  ( ( A R C  /\  -.  B R C )  ->  A  =/=  B )
 
Theoremeqbrtri 4103 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  B R C   =>    |-  A R C
 
Theoremeqbrtrd 4104 Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrri 4105 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A  =  B   &    |-  A R C   =>    |-  B R C
 
Theoremeqbrtrrd 4106 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A R C )   =>    |-  ( ph  ->  B R C )
 
Theorembreqtri 4107 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  B  =  C   =>    |-  A R C
 
Theorembreqtrd 4108 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrri 4109 Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
 |-  A R B   &    |-  C  =  B   =>    |-  A R C
 
Theorembreqtrrd 4110 Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theorem3brtr3i 4111 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C R D
 
Theorem3brtr4i 4112 Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
 |-  A R B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C R D
 
Theorem3brtr3d 4113 Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4d 4114 Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005.)
 |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr3g 4115 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C R D )
 
Theorem3brtr4g 4116 Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
 |-  ( ph  ->  A R B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C R D )
 
Theoremeqbrtrid 4117 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A  =  B   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrid 4118 B chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrid 4119 B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  A R B   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrid 4120 B chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  A R B   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrdi 4121 A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theoremeqbrtrrdi 4122 A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
 |-  ( ph  ->  B  =  A )   &    |-  B R C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrdi 4123 A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
 |-  ( ph  ->  A R B )   &    |-  B  =  C   =>    |-  ( ph  ->  A R C )
 
Theorembreqtrrdi 4124 A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
 |-  ( ph  ->  A R B )   &    |-  C  =  B   =>    |-  ( ph  ->  A R C )
 
Theoremssbrd 4125 Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C A D  ->  C B D ) )
 
Theoremssbr 4126 Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
 |-  ( A  C_  B  ->  ( C A D  ->  C B D ) )
 
Theoremssbri 4127 Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
 |-  A  C_  B   =>    |-  ( C A D  ->  C B D )
 
Theoremnfbrd 4128 Deduction version of bound-variable hypothesis builder nfbr 4129. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x R )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A R B )
 
Theoremnfbr 4129 Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x R   &    |-  F/_ x B   =>    |- 
 F/ x  A R B
 
Theorembrab1 4130* Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
 |-  ( x R A  <->  x  e.  { z  |  z R A }
 )
 
Theorembr0 4131 The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
 |- 
 -.  A (/) B
 
Theorembrne0 4132 If two sets are in a binary relation, the relation cannot be empty. In fact, the relation is also inhabited, as seen at brm 4133. (Contributed by Alexander van der Vekens, 7-Jul-2018.)
 |-  ( A R B  ->  R  =/=  (/) )
 
Theorembrm 4133* If two sets are in a binary relation, the relation is inhabited. (Contributed by Jim Kingdon, 31-Dec-2023.)
 |-  ( A R B  ->  E. x  x  e.  R )
 
Theorembrun 4134 The union of two binary relations. (Contributed by NM, 21-Dec-2008.)
 |-  ( A ( R  u.  S ) B  <-> 
 ( A R B  \/  A S B ) )
 
Theorembrin 4135 The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
 |-  ( A ( R  i^i  S ) B  <-> 
 ( A R B  /\  A S B ) )
 
Theorembrdif 4136 The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
 |-  ( A ( R 
 \  S ) B  <-> 
 ( A R B  /\  -.  A S B ) )
 
Theoremsbcbrg 4137 Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C ) )
 
Theoremsbcbr12g 4138* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R [_ A  /  x ]_ C ) )
 
Theoremsbcbr1g 4139* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B R C ) )
 
Theoremsbcbr2g 4140* Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.)
 |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  B R [_ A  /  x ]_ C ) )
 
Theorembrralrspcev 4141* Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  A R B )  ->  E. x  e.  X  A. y  e.  Y  A R x )
 
Theorembrimralrspcev 4142* Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
 |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B ) 
 ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
 )
 
2.1.23  Ordered-pair class abstractions (class builders)
 
Syntaxcopab 4143 Extend class notation to include ordered-pair class abstraction (class builder).
 class  { <. x ,  y >.  |  ph }
 
Syntaxcmpt 4144 Extend the definition of a class to include maps-to notation for defining a function via a rule.
 class  ( x  e.  A  |->  B )
 
Definitiondf-opab 4145* Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually  x and  y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y ( z  = 
 <. x ,  y >.  /\  ph ) }
 
Definitiondf-mpt 4146* Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from  x (in 
A) to  B ( x )". The class expression  B is the value of the function at  x and normally contains the variable  x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.)
 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
 
Theoremopabss 4147* The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { <. x ,  y >.  |  x R y }  C_  R
 
Theoremopabbid 4148 Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbidv 4149* Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  ch } )
 
Theoremopabbii 4150 Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
 |-  ( ph  <->  ps )   =>    |- 
 { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
 
Theoremnfopab 4151* Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.)
 |- 
 F/ z ph   =>    |-  F/_ z { <. x ,  y >.  |  ph }
 
Theoremnfopab1 4152 The first abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x { <. x ,  y >.  |  ph }
 
Theoremnfopab2 4153 The second abstraction variable in an ordered-pair class abstraction (class builder) is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y { <. x ,  y >.  |  ph }
 
Theoremcbvopab 4154* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
 |- 
 F/ z ph   &    |-  F/ w ph   &    |-  F/ x ps   &    |-  F/ y ps   &    |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopabv 4155* Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( x  =  z  /\  y  =  w )  ->  ( ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  w >.  |  ps }
 
Theoremcbvopab1 4156* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ z ph   &    |-  F/ x ps   &    |-  ( x  =  z  ->  (
 ph 
 <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2 4157* Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.)
 |- 
 F/ z ph   &    |-  F/ y ps   &    |-  ( y  =  z  ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcbvopab1s 4158* Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  [ z  /  x ] ph }
 
Theoremcbvopab1v 4159* Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. z ,  y >.  |  ps }
 
Theoremcbvopab2v 4160* Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   =>    |-  { <. x ,  y >.  |  ph }  =  { <. x ,  z >.  |  ps }
 
Theoremcsbopabg 4161* Move substitution into a class abstraction. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph } )
 
Theoremunopab 4162 Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  u.  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  \/  ps ) }
 
Theoremmpteq12f 4163 An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dva 4164* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12dv 4165* An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq12 4166* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq1 4167* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( A  =  B  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq1d 4168* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq2ia 4169 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq2i 4170 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  B  =  C   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq12i 4171 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
 
Theoremmpteq2da 4172 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dva 4173* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dv 4174* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremnfmpt 4175* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( y  e.  A  |->  B )
 
Theoremnfmpt1 4176 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
 |-  F/_ x ( x  e.  A  |->  B )
 
Theoremcbvmptf 4177* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremcbvmpt 4178* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
 
Theoremcbvmptv 4179* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremmptv 4180* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
 
2.1.24  Transitive classes
 
Syntaxwtr 4181 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
 wff  Tr  A
 
Definitiondf-tr 4182 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4183 (which is suggestive of the word "transitive"), dftr3 4185, dftr4 4186, and dftr5 4184. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  U. A  C_  A )
 
Theoremdftr2 4183* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
 |-  ( Tr  A  <->  A. x A. y
 ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
 
Theoremdftr5 4184* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
 |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
 
Theoremdftr3 4185* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
 
Theoremdftr4 4186 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A  C_  ~P A )
 
Theoremtreq 4187 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B ) )
 
Theoremtrel 4188 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A ) 
 ->  B  e.  A ) )
 
Theoremtrel3 4189 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
 
Theoremtrss 4190 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
 |-  ( Tr  A  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theoremtrin 4191 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
 |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
 
Theoremtr0 4192 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
 |- 
 Tr  (/)
 
Theoremtrv 4193 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
 |- 
 Tr  _V
 
Theoremtriun 4194* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
 
Theoremtruni 4195* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
 
Theoremtrint 4196* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
 
Theoremtrintssm 4197* Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
 |-  ( ( Tr  A  /\  E. x  x  e.  A )  ->  |^| A  C_  A )
 
2.2  IZF Set Theory - add the Axioms of Collection and Separation
 
2.2.1  Introduce the Axiom of Collection
 
Axiomax-coll 4198* Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 4255 but uses a freeness hypothesis in place of one of the distinct variable conditions. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremrepizf 4199* Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4198. It is identical to zfrep6 4200 except for the choice of a freeness hypothesis rather than a disjoint variable condition between  b and  ph. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremzfrep6 4200* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4201 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >