HomeHome Intuitionistic Logic Explorer
Theorem List (p. 42 of 154)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4101-4200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmpteq12 4101* An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
 |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
 
Theoremmpteq1 4102* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( A  =  B  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq1d 4103* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( x  e.  A  |->  C )  =  ( x  e.  B  |->  C ) )
 
Theoremmpteq2ia 4104 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq2i 4105 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
 |-  B  =  C   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
 
Theoremmpteq12i 4106 An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( x  e.  A  |->  B )  =  ( x  e.  C  |->  D )
 
Theoremmpteq2da 4107 Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dva 4108* Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremmpteq2dv 4109* An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
 
Theoremnfmpt 4110* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( y  e.  A  |->  B )
 
Theoremnfmpt1 4111 Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
 |-  F/_ x ( x  e.  A  |->  B )
 
Theoremcbvmptf 4112* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Thierry Arnoux, 9-Mar-2017.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremcbvmpt 4113* Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  C )
 
Theoremcbvmptv 4114* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  ( x  e.  A  |->  B )  =  (
 y  e.  A  |->  C )
 
Theoremmptv 4115* Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
 |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
 
2.1.24  Transitive classes
 
Syntaxwtr 4116 Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35.
 wff  Tr  A
 
Definitiondf-tr 4117 Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 4118 (which is suggestive of the word "transitive"), dftr3 4120, dftr4 4121, and dftr5 4119. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  U. A  C_  A )
 
Theoremdftr2 4118* An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.)
 |-  ( Tr  A  <->  A. x A. y
 ( ( x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
 
Theoremdftr5 4119* An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
 |-  ( Tr  A  <->  A. x  e.  A  A. y  e.  x  y  e.  A )
 
Theoremdftr3 4120* An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A. x  e.  A  x  C_  A )
 
Theoremdftr4 4121 An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
 |-  ( Tr  A  <->  A  C_  ~P A )
 
Theoremtreq 4122 Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
 |-  ( A  =  B  ->  ( Tr  A  <->  Tr  B ) )
 
Theoremtrel 4123 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A ) 
 ->  B  e.  A ) )
 
Theoremtrel3 4124 In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
 |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
 
Theoremtrss 4125 An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.)
 |-  ( Tr  A  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theoremtrin 4126 The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
 |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
 
Theoremtr0 4127 The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
 |- 
 Tr  (/)
 
Theoremtrv 4128 The universe is transitive. (Contributed by NM, 14-Sep-2003.)
 |- 
 Tr  _V
 
Theoremtriun 4129* The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( A. x  e.  A  Tr  B  ->  Tr  U_ x  e.  A  B )
 
Theoremtruni 4130* The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
 
Theoremtrint 4131* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
 
Theoremtrintssm 4132* Any inhabited transitive class includes its intersection. Similar to Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the inhabitedness hypothesis). (Contributed by Jim Kingdon, 22-Aug-2018.)
 |-  ( ( Tr  A  /\  E. x  x  e.  A )  ->  |^| A  C_  A )
 
2.2  IZF Set Theory - add the Axioms of Collection and Separation
 
2.2.1  Introduce the Axiom of Collection
 
Axiomax-coll 4133* Axiom of Collection. Axiom 7 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). It is similar to bnd 4190 but uses a freeness hypothesis in place of one of the distinct variable conditions. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremrepizf 4134* Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4133. It is identical to zfrep6 4135 except for the choice of a freeness hypothesis rather than a disjoint variable condition between  b and  ph. (Contributed by Jim Kingdon, 23-Aug-2018.)
 |- 
 F/ b ph   =>    |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
 
Theoremzfrep6 4135* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4136 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
2.2.2  Introduce the Axiom of Separation
 
Axiomax-sep 4136* The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a  F/ y ph condition replaced by a disjoint variable condition between  y and  ph).

The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with  x  e.  z) so that it asserts the existence of a collection only if it is smaller than some other collection  z that already exists. This prevents Russell's paradox ru 2976. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

(Contributed by NM, 11-Sep-2006.)

 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremaxsep2 4137* A less restrictive version of the Separation Scheme ax-sep 4136, where variables  x and  z can both appear free in the wff  ph, which can therefore be thought of as  ph ( x ,  z ). This version was derived from the more restrictive ax-sep 4136 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
 |- 
 E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph ) )
 
Theoremzfauscl 4138* Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 4136, we invoke the Axiom of Extensionality (indirectly via vtocl 2806), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
 )
 
Theorembm1.3ii 4139* Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4136. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 5-Aug-1993.)
 |- 
 E. x A. y
 ( ph  ->  y  e.  x )   =>    |- 
 E. x A. y
 ( y  e.  x  <->  ph )
 
Theorema9evsep 4140* Derive a weakened version of ax-i9 1541, where  x and  y must be distinct, from Separation ax-sep 4136 and Extensionality ax-ext 2171. The theorem  -.  A. x -.  x  =  y also holds (ax9vsep 4141), but in intuitionistic logic  E. x x  =  y is stronger. (Contributed by Jim Kingdon, 25-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 E. x  x  =  y
 
Theoremax9vsep 4141* Derive a weakened version of ax-9 1542, where  x and  y must be distinct, from Separation ax-sep 4136 and Extensionality ax-ext 2171. In intuitionistic logic a9evsep 4140 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 -.  A. x  -.  x  =  y
 
2.2.3  Derive the Null Set Axiom
 
Theoremzfnuleu 4142* Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2174 to strengthen the hypothesis in the form of axnul 4143). (Contributed by NM, 22-Dec-2007.)
 |- 
 E. x A. y  -.  y  e.  x   =>    |-  E! x A. y  -.  y  e.  x
 
Theoremaxnul 4143* The Null Set Axiom of ZF set theory: there exists a set with no elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks, this is presented as a separate axiom; here we show it can be derived from Separation ax-sep 4136. This version of the Null Set Axiom tells us that at least one empty set exists, but does not tell us that it is unique - we need the Axiom of Extensionality to do that (see zfnuleu 4142).

This theorem should not be referenced by any proof. Instead, use ax-nul 4144 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)

 |- 
 E. x A. y  -.  y  e.  x
 
Axiomax-nul 4144* The Null Set Axiom of IZF set theory. It was derived as axnul 4143 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. Axiom 4 of [Crosilla] p. "Axioms of CZF and IZF". (Contributed by NM, 7-Aug-2003.)
 |- 
 E. x A. y  -.  y  e.  x
 
Theorem0ex 4145 The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 4144. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  (/)  e.  _V
 
Theoremcsbexga 4146 The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.)
 |-  ( ( A  e.  V  /\  A. x  B  e.  W )  ->  [_ A  /  x ]_ B  e.  _V )
 
Theoremcsbexa 4147 The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  [_ A  /  x ]_ B  e.  _V
 
2.2.4  Theorems requiring subset and intersection existence
 
Theoremnalset 4148* No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  E. x A. y  y  e.  x
 
Theoremvnex 4149 The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.)
 |- 
 -.  E. x  x  =  _V
 
Theoremvprc 4150 The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
 |- 
 -.  _V  e.  _V
 
Theoremnvel 4151 The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
 |- 
 -.  _V  e.  A
 
Theoreminex1 4152 Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  i^i  B )  e.  _V
 
Theoreminex2 4153 Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
 |-  A  e.  _V   =>    |-  ( B  i^i  A )  e.  _V
 
Theoreminex1g 4154 Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
 |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theoremssex 4155 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4136 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
 |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theoremssexi 4156 The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
 |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theoremssexg 4157 The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.)
 |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremssexd 4158 A subclass of a set is a set. Deduction form of ssexg 4157. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A 
 C_  B )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremdifexg 4159 Existence of a difference. (Contributed by NM, 26-May-1998.)
 |-  ( A  e.  V  ->  ( A  \  B )  e.  _V )
 
Theoremzfausab 4160* Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
 |-  A  e.  _V   =>    |-  { x  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremrabexg 4161* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.)
 |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theoremrabex 4162* Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.)
 |-  A  e.  _V   =>    |-  { x  e.  A  |  ph }  e.  _V
 
Theoremrabexd 4163* Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4164. (Contributed by AV, 16-Jul-2019.)
 |-  B  =  { x  e.  A  |  ps }   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  B  e.  _V )
 
Theoremrabex2 4164* Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
 |-  B  =  { x  e.  A  |  ps }   &    |-  A  e.  _V   =>    |-  B  e.  _V
 
Theoremrab2ex 4165* A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
 |-  B  =  { y  e.  A  |  ps }   &    |-  A  e.  _V   =>    |- 
 { x  e.  B  |  ph }  e.  _V
 
Theoremelssabg 4166* Membership in a class abstraction involving a subset. Unlike elabg 2898,  A does not have to be a set. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( B  e.  V  ->  ( A  e.  { x  |  ( x 
 C_  B  /\  ph ) } 
 <->  ( A  C_  B  /\  ps ) ) )
 
Theoreminteximm 4167* The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
 
Theoremintexr 4168 If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( |^| A  e.  _V 
 ->  A  =/=  (/) )
 
Theoremintnexr 4169 If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( |^| A  =  _V  ->  -.  |^| A  e.  _V )
 
Theoremintexabim 4170 The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( E. x ph  -> 
 |^| { x  |  ph }  e.  _V )
 
Theoremintexrabim 4171 The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
 |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
 
Theoremiinexgm 4172* The existence of an indexed union. 
x is normally a free-variable parameter in  B, which should be read  B ( x ). (Contributed by Jim Kingdon, 28-Aug-2018.)
 |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
 
Theoreminuni 4173* The intersection of a union  U. A with a class  B is equal to the union of the intersections of each element of  A with  B. (Contributed by FL, 24-Mar-2007.)
 |-  ( U. A  i^i  B )  =  U. { x  |  E. y  e.  A  x  =  ( y  i^i  B ) }
 
Theoremelpw2g 4174 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.)
 |-  ( B  e.  V  ->  ( A  e.  ~P B 
 <->  A  C_  B )
 )
 
Theoremelpw2 4175 Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
 |-  B  e.  _V   =>    |-  ( A  e.  ~P B  <->  A  C_  B )
 
Theoremelpwi2 4176 Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.)
 |-  B  e.  V   &    |-  A  C_  B   =>    |-  A  e.  ~P B
 
Theorempwnss 4177 The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( A  e.  V  ->  -.  ~P A  C_  A )
 
Theorempwne 4178 No set equals its power set. The sethood antecedent is necessary; compare pwv 3823. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
 |-  ( A  e.  V  ->  ~P A  =/=  A )
 
Theoremrepizf2lem 4179 Lemma for repizf2 4180. If we have a function-like proposition which provides at most one value of  y for each  x in a set  w, we can change "at most one" to "exactly one" by restricting the values of  x to those values for which the proposition provides a value of  y. (Contributed by Jim Kingdon, 7-Sep-2018.)
 |-  ( A. x  e.  w  E* y ph  <->  A. x  e.  { x  e.  w  |  E. y ph } E! y ph )
 
Theoremrepizf2 4180* Replacement. This version of replacement is stronger than repizf 4134 in the sense that  ph does not need to map all values of  x in  w to a value of  y. The resulting set contains those elements for which there is a value of  y and in that sense, this theorem combines repizf 4134 with ax-sep 4136. Another variation would be  A. x  e.  w E* y ph  ->  { y  |  E. x ( x  e.  w  /\  ph ) }  e.  _V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
 |- 
 F/ z ph   =>    |-  ( A. x  e.  w  E* y ph  ->  E. z A. x  e.  { x  e.  w  |  E. y ph } E. y  e.  z  ph )
 
2.2.5  Theorems requiring empty set existence
 
Theoremclass2seteq 4181* Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.)
 |-  ( A  e.  V  ->  { x  e.  A  |  A  e.  _V }  =  A )
 
Theorem0elpw 4182 Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.)
 |-  (/)  e.  ~P A
 
Theorem0nep0 4183 The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
 |-  (/)  =/=  { (/) }
 
Theorem0inp0 4184 Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
 |-  ( A  =  (/)  ->  -.  A  =  { (/) } )
 
Theoremunidif0 4185 The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
 |- 
 U. ( A  \  { (/) } )  = 
 U. A
 
Theoremiin0imm 4186* An indexed intersection of the empty set, with an inhabited index set, is empty. (Contributed by Jim Kingdon, 29-Aug-2018.)
 |-  ( E. y  y  e.  A  ->  |^|_ x  e.  A  (/)  =  (/) )
 
Theoremiin0r 4187* If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
 |-  ( |^|_ x  e.  A  (/) 
 =  (/)  ->  A  =/=  (/) )
 
Theoremintv 4188 The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
 |- 
 |^| _V  =  (/)
 
Theoremaxpweq 4189* Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4192 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
 |-  A  e.  _V   =>    |-  ( ~P A  e.  _V  <->  E. x A. y
 ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
 
2.2.6  Collection principle
 
Theorembnd 4190* A very strong generalization of the Axiom of Replacement (compare zfrep6 4135). Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. In the context of IZF, it is just a slight variation of ax-coll 4133. (Contributed by NM, 17-Oct-2004.)
 |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
Theorembnd2 4191* A variant of the Boundedness Axiom bnd 4190 that picks a subset  z out of a possibly proper class 
B in which a property is true. (Contributed by NM, 4-Feb-2004.)
 |-  A  e.  _V   =>    |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. z
 ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph ) )
 
2.3  IZF Set Theory - add the Axioms of Power Sets and Pairing
 
2.3.1  Introduce the Axiom of Power Sets
 
Axiomax-pow 4192* Axiom of Power Sets. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set 
y exists that includes the power set of a given set  x i.e. contains every subset of  x. This is Axiom 8 of [Crosilla] p. "Axioms of CZF and IZF" except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4139).

The variant axpow2 4194 uses explicit subset notation. A version using class notation is pwex 4201. (Contributed by NM, 5-Aug-1993.)

 |- 
 E. y A. z
 ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
 
Theoremzfpow 4193* Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
 |- 
 E. x A. y
 ( A. x ( x  e.  y  ->  x  e.  z )  ->  y  e.  x )
 
Theoremaxpow2 4194* A variant of the Axiom of Power Sets ax-pow 4192 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  ->  z  e.  y )
 
Theoremaxpow3 4195* A variant of the Axiom of Power Sets ax-pow 4192. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  <->  z  e.  y )
 
Theoremel 4196* Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |- 
 E. y  x  e.  y
 
Theoremvpwex 4197 Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4198 from vpwex 4197. (Revised by BJ, 10-Aug-2022.)
 |- 
 ~P x  e.  _V
 
Theorempwexg 4198 Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
 |-  ( A  e.  V  ->  ~P A  e.  _V )
 
Theorempwexd 4199 Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ~P A  e.  _V )
 
Theoremabssexg 4200* Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15311
  Copyright terms: Public domain < Previous  Next >