| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zfnuleu | Unicode version | ||
| Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2214 to strengthen the hypothesis in the form of axnul 4209). (Contributed by NM, 22-Dec-2007.) |
| Ref | Expression |
|---|---|
| zfnuleu.1 |
|
| Ref | Expression |
|---|---|
| zfnuleu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfnuleu.1 |
. . . 4
| |
| 2 | nbfal 1406 |
. . . . . 6
| |
| 3 | 2 | albii 1516 |
. . . . 5
|
| 4 | 3 | exbii 1651 |
. . . 4
|
| 5 | 1, 4 | mpbi 145 |
. . 3
|
| 6 | nfv 1574 |
. . . 4
| |
| 7 | 6 | bm1.1 2214 |
. . 3
|
| 8 | 5, 7 | ax-mp 5 |
. 2
|
| 9 | 3 | eubii 2086 |
. 2
|
| 10 | 8, 9 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |