Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli Unicode version

Theorem bdeli 14683
Description: Inference associated with bdel 14682. Its converse is bdelir 14684. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1  |- BOUNDED  A
Assertion
Ref Expression
bdeli  |- BOUNDED  x  e.  A
Distinct variable group:    x, A

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2  |- BOUNDED  A
2 bdel 14682 . 2  |-  (BOUNDED  A  -> BOUNDED  x  e.  A )
31, 2ax-mp 5 1  |- BOUNDED  x  e.  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2148  BOUNDED wbd 14649  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-bdc 14678
This theorem is referenced by:  bdph  14687  bdcrab  14689  bdnel  14691  bdccsb  14697  bdcdif  14698  bdcun  14699  bdcin  14700  bdss  14701  bdsnss  14710  bdciun  14715  bdciin  14716  bdinex1  14736  bj-uniex2  14753  bj-inf2vnlem3  14809
  Copyright terms: Public domain W3C validator