Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsbc Unicode version

Theorem bdsbc 15504
Description: A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 15505. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdcsbc.1  |- BOUNDED  ph
Assertion
Ref Expression
bdsbc  |- BOUNDED  [. y  /  x ]. ph

Proof of Theorem bdsbc
StepHypRef Expression
1 bdcsbc.1 . . 3  |- BOUNDED  ph
21ax-bdsb 15468 . 2  |- BOUNDED  [ y  /  x ] ph
3 sbsbc 2993 . 2  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
42, 3bd0 15470 1  |- BOUNDED  [. y  /  x ]. ph
Colors of variables: wff set class
Syntax hints:   [wsb 1776   [.wsbc 2989  BOUNDED wbd 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15459  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-sbc 2990
This theorem is referenced by:  bdccsb  15506
  Copyright terms: Public domain W3C validator