| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbsbc | Unicode version | ||
| Description: Show that df-sb 1787 and df-sbc 3006 are equivalent when the class term |
| Ref | Expression |
|---|---|
| sbsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | dfsbcq2 3008 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-clab 2194 df-cleq 2200 df-clel 2203 df-sbc 3006 |
| This theorem is referenced by: spsbc 3017 sbcid 3021 sbcco 3027 sbcco2 3028 sbcie2g 3039 eqsbc1 3045 sbcralt 3082 sbcrext 3083 sbnfc2 3162 csbabg 3163 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 cbvrabcsf 3167 isarep1 5379 finexdc 7025 ssfirab 7059 zsupcllemstep 10409 bezoutlemmain 12434 bdsbc 15993 |
| Copyright terms: Public domain | W3C validator |