| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbsbc | Unicode version | ||
| Description: Show that df-sb 1777 and df-sbc 2990 are equivalent when the class term  | 
| Ref | Expression | 
|---|---|
| sbsbc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | dfsbcq2 2992 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 | 
| This theorem is referenced by: spsbc 3001 sbcid 3005 sbcco 3011 sbcco2 3012 sbcie2g 3023 eqsbc1 3029 sbcralt 3066 sbcrext 3067 sbnfc2 3145 csbabg 3146 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 isarep1 5344 finexdc 6963 ssfirab 6997 zsupcllemstep 10319 bezoutlemmain 12165 bdsbc 15504 | 
| Copyright terms: Public domain | W3C validator |