| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbsbc | Unicode version | ||
| Description: Show that df-sb 1809 and df-sbc 3029 are equivalent when the class term |
| Ref | Expression |
|---|---|
| sbsbc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | dfsbcq2 3031 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: spsbc 3040 sbcid 3044 sbcco 3050 sbcco2 3051 sbcie2g 3062 eqsbc1 3068 sbcralt 3105 sbcrext 3106 sbnfc2 3185 csbabg 3186 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 isarep1 5407 finexdc 7064 ssfirab 7098 zsupcllemstep 10449 bezoutlemmain 12519 bdsbc 16221 |
| Copyright terms: Public domain | W3C validator |