Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbsbc | Unicode version |
Description: Show that df-sb 1740 and df-sbc 2934 are equivalent when the class term in df-sbc 2934 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1740 for proofs involving df-sbc 2934. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2154 | . 2 | |
2 | dfsbcq2 2936 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1739 wsbc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-clab 2141 df-cleq 2147 df-clel 2150 df-sbc 2934 |
This theorem is referenced by: spsbc 2944 sbcid 2948 sbcco 2954 sbcco2 2955 sbcie2g 2966 eqsbc3 2972 sbcralt 3009 sbcrext 3010 sbnfc2 3087 csbabg 3088 cbvralcsf 3089 cbvrexcsf 3090 cbvreucsf 3091 cbvrabcsf 3092 isarep1 5249 finexdc 6836 ssfirab 6867 zsupcllemstep 11805 bezoutlemmain 11854 bdsbc 13379 |
Copyright terms: Public domain | W3C validator |