Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv Unicode version

Theorem bdcvv 15992
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv  |- BOUNDED  _V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2779 . . 3  |-  x  e. 
_V
21bdth 15966 . 2  |- BOUNDED  x  e.  _V
32bdelir 15982 1  |- BOUNDED  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdeq 15955
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-bdc 15976
This theorem is referenced by:  bdcnulALT  16001
  Copyright terms: Public domain W3C validator