Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv Unicode version

Theorem bdcvv 13699
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv  |- BOUNDED  _V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2728 . . 3  |-  x  e. 
_V
21bdth 13673 . 2  |- BOUNDED  x  e.  _V
32bdelir 13689 1  |- BOUNDED  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2725  BOUNDED wbdc 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147  ax-bd0 13655  ax-bdim 13656  ax-bdeq 13662
This theorem depends on definitions:  df-bi 116  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2727  df-bdc 13683
This theorem is referenced by:  bdcnulALT  13708
  Copyright terms: Public domain W3C validator