Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv Unicode version

Theorem bdcvv 15793
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv  |- BOUNDED  _V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2775 . . 3  |-  x  e. 
_V
21bdth 15767 . 2  |- BOUNDED  x  e.  _V
32bdelir 15783 1  |- BOUNDED  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772  BOUNDED wbdc 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187  ax-bd0 15749  ax-bdim 15750  ax-bdeq 15756
This theorem depends on definitions:  df-bi 117  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774  df-bdc 15777
This theorem is referenced by:  bdcnulALT  15802
  Copyright terms: Public domain W3C validator