ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32 Unicode version

Theorem pm5.32 453
Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
pm5.32  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  /\ 
ps )  <->  ( ph  /\ 
ch ) ) )

Proof of Theorem pm5.32
StepHypRef Expression
1 id 19 . . 3  |-  ( (
ph  ->  ( ps  <->  ch )
)  ->  ( ph  ->  ( ps  <->  ch )
) )
21pm5.32d 450 . 2  |-  ( (
ph  ->  ( ps  <->  ch )
)  ->  ( ( ph  /\  ps )  <->  ( ph  /\ 
ch ) ) )
3 ibar 301 . . . 4  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
4 ibar 301 . . . 4  |-  ( ph  ->  ( ch  <->  ( ph  /\ 
ch ) ) )
53, 4bibi12d 235 . . 3  |-  ( ph  ->  ( ( ps  <->  ch )  <->  ( ( ph  /\  ps ) 
<->  ( ph  /\  ch ) ) ) )
65biimprcd 160 . 2  |-  ( ( ( ph  /\  ps ) 
<->  ( ph  /\  ch ) )  ->  ( ph  ->  ( ps  <->  ch )
) )
72, 6impbii 126 1  |-  ( (
ph  ->  ( ps  <->  ch )
)  <->  ( ( ph  /\ 
ps )  <->  ( ph  /\ 
ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.32i  454  biadani  612  xordidc  1399  cbvex2  1922  rabbi  2655  rabxfrd  4471  asymref  5016  rexrnmpt  5661  mpo2eqb  5986
  Copyright terms: Public domain W3C validator