ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bianabs Unicode version

Theorem bianabs 601
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ch ) ) )
Assertion
Ref Expression
bianabs  |-  ( ph  ->  ( ps  <->  ch )
)

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ch ) ) )
2 ibar 299 . 2  |-  ( ph  ->  ( ch  <->  ( ph  /\ 
ch ) ) )
31, 2bitr4d 190 1  |-  ( ph  ->  ( ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsrexv  2842  opelopab2a  4226  ov  5941  ovg  5960  ltresr  7760
  Copyright terms: Public domain W3C validator