| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 |
|
| Ref | Expression |
|---|---|
| pm4.71ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 816 prlem2 977 sb6 1911 2moswapdc 2146 exsnrex 3685 eliunxp 4835 asymref 5087 elxp4 5189 elxp5 5190 dffun9 5319 funcnv 5354 funcnv3 5355 f1ompt 5754 eufnfv 5838 dff1o6 5868 abexex 6234 dfoprab4 6301 tpostpos 6373 erovlem 6737 elixp2 6812 xpsnen 6941 ctssdccl 7239 ltbtwnnq 7564 enq0enq 7579 prnmaxl 7636 prnminu 7637 elznn0nn 9421 zrevaddcl 9458 qrevaddcl 9800 climreu 11723 isprm3 12555 isprm4 12556 xpscf 13294 tgval2 14638 eltg2b 14641 isms2 15041 2lgslem1b 15681 |
| Copyright terms: Public domain | W3C validator |