| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 |
|
| Ref | Expression |
|---|---|
| pm4.71ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 614 orabs 819 prlem2 980 sb6 1933 2moswapdc 2168 exsnrex 3708 eliunxp 4861 asymref 5114 elxp4 5216 elxp5 5217 dffun9 5347 funcnv 5382 funcnv3 5383 f1ompt 5786 eufnfv 5870 dff1o6 5900 abexex 6271 dfoprab4 6338 tpostpos 6410 erovlem 6774 elixp2 6849 xpsnen 6980 ctssdccl 7278 ltbtwnnq 7603 enq0enq 7618 prnmaxl 7675 prnminu 7676 elznn0nn 9460 zrevaddcl 9497 qrevaddcl 9839 climreu 11808 isprm3 12640 isprm4 12641 xpscf 13380 tgval2 14725 eltg2b 14728 isms2 15128 2lgslem1b 15768 |
| Copyright terms: Public domain | W3C validator |