![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71ri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71r 390 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1898 2moswapdc 2128 exsnrex 3649 eliunxp 4781 asymref 5029 elxp4 5131 elxp5 5132 dffun9 5260 funcnv 5292 funcnv3 5293 f1ompt 5683 eufnfv 5763 dff1o6 5793 abexex 6145 dfoprab4 6211 tpostpos 6283 erovlem 6645 elixp2 6720 xpsnen 6839 ctssdccl 7128 ltbtwnnq 7433 enq0enq 7448 prnmaxl 7505 prnminu 7506 elznn0nn 9285 zrevaddcl 9321 qrevaddcl 9662 climreu 11323 isprm3 12136 isprm4 12137 xpscf 12789 tgval2 13948 eltg2b 13951 isms2 14351 |
Copyright terms: Public domain | W3C validator |