| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 |
|
| Ref | Expression |
|---|---|
| pm4.71ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1901 2moswapdc 2135 exsnrex 3665 eliunxp 4806 asymref 5056 elxp4 5158 elxp5 5159 dffun9 5288 funcnv 5320 funcnv3 5321 f1ompt 5716 eufnfv 5796 dff1o6 5826 abexex 6192 dfoprab4 6259 tpostpos 6331 erovlem 6695 elixp2 6770 xpsnen 6889 ctssdccl 7186 ltbtwnnq 7500 enq0enq 7515 prnmaxl 7572 prnminu 7573 elznn0nn 9357 zrevaddcl 9393 qrevaddcl 9735 climreu 11479 isprm3 12311 isprm4 12312 xpscf 13049 tgval2 14371 eltg2b 14374 isms2 14774 2lgslem1b 15414 |
| Copyright terms: Public domain | W3C validator |