![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71ri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71r 390 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1898 2moswapdc 2132 exsnrex 3660 eliunxp 4801 asymref 5051 elxp4 5153 elxp5 5154 dffun9 5283 funcnv 5315 funcnv3 5316 f1ompt 5709 eufnfv 5789 dff1o6 5819 abexex 6178 dfoprab4 6245 tpostpos 6317 erovlem 6681 elixp2 6756 xpsnen 6875 ctssdccl 7170 ltbtwnnq 7476 enq0enq 7491 prnmaxl 7548 prnminu 7549 elznn0nn 9331 zrevaddcl 9367 qrevaddcl 9709 climreu 11440 isprm3 12256 isprm4 12257 xpscf 12930 tgval2 14219 eltg2b 14222 isms2 14622 |
Copyright terms: Public domain | W3C validator |