![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm4.71ri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm4.71r 390 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1898 2moswapdc 2132 exsnrex 3661 eliunxp 4802 asymref 5052 elxp4 5154 elxp5 5155 dffun9 5284 funcnv 5316 funcnv3 5317 f1ompt 5710 eufnfv 5790 dff1o6 5820 abexex 6180 dfoprab4 6247 tpostpos 6319 erovlem 6683 elixp2 6758 xpsnen 6877 ctssdccl 7172 ltbtwnnq 7478 enq0enq 7493 prnmaxl 7550 prnminu 7551 elznn0nn 9334 zrevaddcl 9370 qrevaddcl 9712 climreu 11443 isprm3 12259 isprm4 12260 xpscf 12933 tgval2 14230 eltg2b 14233 isms2 14633 2lgslem1b 15246 |
Copyright terms: Public domain | W3C validator |