| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 |
|
| Ref | Expression |
|---|---|
| pm4.71ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 816 prlem2 977 sb6 1910 2moswapdc 2144 exsnrex 3675 eliunxp 4818 asymref 5069 elxp4 5171 elxp5 5172 dffun9 5301 funcnv 5336 funcnv3 5337 f1ompt 5733 eufnfv 5817 dff1o6 5847 abexex 6213 dfoprab4 6280 tpostpos 6352 erovlem 6716 elixp2 6791 xpsnen 6918 ctssdccl 7215 ltbtwnnq 7531 enq0enq 7546 prnmaxl 7603 prnminu 7604 elznn0nn 9388 zrevaddcl 9425 qrevaddcl 9767 climreu 11641 isprm3 12473 isprm4 12474 xpscf 13212 tgval2 14556 eltg2b 14559 isms2 14959 2lgslem1b 15599 |
| Copyright terms: Public domain | W3C validator |