| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71ri | Unicode version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| pm4.71ri.1 |
|
| Ref | Expression |
|---|---|
| pm4.71ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71ri.1 |
. 2
| |
| 2 | pm4.71r 390 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadan2 456 anabs7 574 biadani 612 orabs 815 prlem2 976 sb6 1901 2moswapdc 2135 exsnrex 3664 eliunxp 4805 asymref 5055 elxp4 5157 elxp5 5158 dffun9 5287 funcnv 5319 funcnv3 5320 f1ompt 5713 eufnfv 5793 dff1o6 5823 abexex 6183 dfoprab4 6250 tpostpos 6322 erovlem 6686 elixp2 6761 xpsnen 6880 ctssdccl 7177 ltbtwnnq 7483 enq0enq 7498 prnmaxl 7555 prnminu 7556 elznn0nn 9340 zrevaddcl 9376 qrevaddcl 9718 climreu 11462 isprm3 12286 isprm4 12287 xpscf 12990 tgval2 14287 eltg2b 14290 isms2 14690 2lgslem1b 15330 |
| Copyright terms: Public domain | W3C validator |