Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbime Unicode version

Theorem bj-sbime 13664
Description: A strengthening of sbie 1779 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbime.nf  |-  F/ x ps
bj-sbime.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-sbime  |-  ( [ y  /  x ] ph  ->  ps )

Proof of Theorem bj-sbime
StepHypRef Expression
1 bj-sbime.nf . . 3  |-  F/ x ps
21nfri 1507 . 2  |-  ( ps 
->  A. x ps )
3 bj-sbime.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3bj-sbimeh 13663 1  |-  ( [ y  /  x ] ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1448   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751
This theorem is referenced by:  setindis  13859  bdsetindis  13861
  Copyright terms: Public domain W3C validator