Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbime Unicode version

Theorem bj-sbime 13808
Description: A strengthening of sbie 1784 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbime.nf  |-  F/ x ps
bj-sbime.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-sbime  |-  ( [ y  /  x ] ph  ->  ps )

Proof of Theorem bj-sbime
StepHypRef Expression
1 bj-sbime.nf . . 3  |-  F/ x ps
21nfri 1512 . 2  |-  ( ps 
->  A. x ps )
3 bj-sbime.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3bj-sbimeh 13807 1  |-  ( [ y  /  x ] ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1453   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756
This theorem is referenced by:  setindis  14002  bdsetindis  14004
  Copyright terms: Public domain W3C validator