Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbime Unicode version

Theorem bj-sbime 14928
Description: A strengthening of sbie 1802 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbime.nf  |-  F/ x ps
bj-sbime.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-sbime  |-  ( [ y  /  x ] ph  ->  ps )

Proof of Theorem bj-sbime
StepHypRef Expression
1 bj-sbime.nf . . 3  |-  F/ x ps
21nfri 1530 . 2  |-  ( ps 
->  A. x ps )
3 bj-sbime.1 . 2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3bj-sbimeh 14927 1  |-  ( [ y  /  x ] ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1471   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774
This theorem is referenced by:  setindis  15122  bdsetindis  15124
  Copyright terms: Public domain W3C validator