Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > setindis | Unicode version |
Description: Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
Ref | Expression |
---|---|
setindis.nf0 | |
setindis.nf1 | |
setindis.nf2 | |
setindis.nf3 | |
setindis.1 | |
setindis.2 |
Ref | Expression |
---|---|
setindis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . . . 5 | |
2 | setindis.nf0 | . . . . 5 | |
3 | 1, 2 | nfralxy 2508 | . . . 4 |
4 | setindis.nf1 | . . . 4 | |
5 | 3, 4 | nfim 1565 | . . 3 |
6 | nfcv 2312 | . . . . 5 | |
7 | setindis.nf3 | . . . . 5 | |
8 | 6, 7 | nfralxy 2508 | . . . 4 |
9 | setindis.nf2 | . . . 4 | |
10 | 8, 9 | nfim 1565 | . . 3 |
11 | raleq 2665 | . . . . 5 | |
12 | 11 | biimprd 157 | . . . 4 |
13 | setindis.2 | . . . . 5 | |
14 | 13 | equcoms 1701 | . . . 4 |
15 | 12, 14 | imim12d 74 | . . 3 |
16 | 5, 10, 15 | cbv3 1735 | . 2 |
17 | setindis.1 | . . . . . 6 | |
18 | 2, 17 | bj-sbime 13808 | . . . . 5 |
19 | 18 | ralimi 2533 | . . . 4 |
20 | 19 | imim1i 60 | . . 3 |
21 | 20 | alimi 1448 | . 2 |
22 | ax-setind 4521 | . 2 | |
23 | 16, 21, 22 | 3syl 17 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wnf 1453 wsb 1755 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: bj-inf2vnlem4 14008 bj-findis 14014 |
Copyright terms: Public domain | W3C validator |