| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindis | Unicode version | ||
| Description: Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| setindis.nf0 | 
 | 
| setindis.nf1 | 
 | 
| setindis.nf2 | 
 | 
| setindis.nf3 | 
 | 
| setindis.1 | 
 | 
| setindis.2 | 
 | 
| Ref | Expression | 
|---|---|
| setindis | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | 
. . . . 5
 | |
| 2 | setindis.nf0 | 
. . . . 5
 | |
| 3 | 1, 2 | nfralxy 2535 | 
. . . 4
 | 
| 4 | setindis.nf1 | 
. . . 4
 | |
| 5 | 3, 4 | nfim 1586 | 
. . 3
 | 
| 6 | nfcv 2339 | 
. . . . 5
 | |
| 7 | setindis.nf3 | 
. . . . 5
 | |
| 8 | 6, 7 | nfralxy 2535 | 
. . . 4
 | 
| 9 | setindis.nf2 | 
. . . 4
 | |
| 10 | 8, 9 | nfim 1586 | 
. . 3
 | 
| 11 | raleq 2693 | 
. . . . 5
 | |
| 12 | 11 | biimprd 158 | 
. . . 4
 | 
| 13 | setindis.2 | 
. . . . 5
 | |
| 14 | 13 | equcoms 1722 | 
. . . 4
 | 
| 15 | 12, 14 | imim12d 74 | 
. . 3
 | 
| 16 | 5, 10, 15 | cbv3 1756 | 
. 2
 | 
| 17 | setindis.1 | 
. . . . . 6
 | |
| 18 | 2, 17 | bj-sbime 15419 | 
. . . . 5
 | 
| 19 | 18 | ralimi 2560 | 
. . . 4
 | 
| 20 | 19 | imim1i 60 | 
. . 3
 | 
| 21 | 20 | alimi 1469 | 
. 2
 | 
| 22 | ax-setind 4573 | 
. 2
 | |
| 23 | 16, 21, 22 | 3syl 17 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: bj-inf2vnlem4 15619 bj-findis 15625 | 
| Copyright terms: Public domain | W3C validator |