| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindis | Unicode version | ||
| Description: Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindis.nf0 |
|
| setindis.nf1 |
|
| setindis.nf2 |
|
| setindis.nf3 |
|
| setindis.1 |
|
| setindis.2 |
|
| Ref | Expression |
|---|---|
| setindis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. . . . 5
| |
| 2 | setindis.nf0 |
. . . . 5
| |
| 3 | 1, 2 | nfralxy 2535 |
. . . 4
|
| 4 | setindis.nf1 |
. . . 4
| |
| 5 | 3, 4 | nfim 1586 |
. . 3
|
| 6 | nfcv 2339 |
. . . . 5
| |
| 7 | setindis.nf3 |
. . . . 5
| |
| 8 | 6, 7 | nfralxy 2535 |
. . . 4
|
| 9 | setindis.nf2 |
. . . 4
| |
| 10 | 8, 9 | nfim 1586 |
. . 3
|
| 11 | raleq 2693 |
. . . . 5
| |
| 12 | 11 | biimprd 158 |
. . . 4
|
| 13 | setindis.2 |
. . . . 5
| |
| 14 | 13 | equcoms 1722 |
. . . 4
|
| 15 | 12, 14 | imim12d 74 |
. . 3
|
| 16 | 5, 10, 15 | cbv3 1756 |
. 2
|
| 17 | setindis.1 |
. . . . . 6
| |
| 18 | 2, 17 | bj-sbime 15503 |
. . . . 5
|
| 19 | 18 | ralimi 2560 |
. . . 4
|
| 20 | 19 | imim1i 60 |
. . 3
|
| 21 | 20 | alimi 1469 |
. 2
|
| 22 | ax-setind 4574 |
. 2
| |
| 23 | 16, 21, 22 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: bj-inf2vnlem4 15703 bj-findis 15709 |
| Copyright terms: Public domain | W3C validator |