Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-el2oss1o Unicode version

Theorem bj-el2oss1o 16138
Description: Shorter proof of el2oss1o 6589 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem bj-el2oss1o
StepHypRef Expression
1 1on 6569 . . . 4  |-  1o  e.  On
21ontrci 4518 . . 3  |-  Tr  1o
3 trsucss 4514 . . 3  |-  ( Tr  1o  ->  ( A  e.  suc  1o  ->  A  C_  1o ) )
42, 3ax-mp 5 . 2  |-  ( A  e.  suc  1o  ->  A 
C_  1o )
5 df-2o 6563 . 2  |-  2o  =  suc  1o
64, 5eleq2s 2324 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   Tr wtr 4182   suc csuc 4456   1oc1o 6555   2oc2o 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562  df-2o 6563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator