Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-el2oss1o Unicode version

Theorem bj-el2oss1o 15387
Description: Shorter proof of el2oss1o 6501 using more axioms. (Contributed by BJ, 21-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-el2oss1o  |-  ( A  e.  2o  ->  A  C_  1o )

Proof of Theorem bj-el2oss1o
StepHypRef Expression
1 1on 6481 . . . 4  |-  1o  e.  On
21ontrci 4462 . . 3  |-  Tr  1o
3 trsucss 4458 . . 3  |-  ( Tr  1o  ->  ( A  e.  suc  1o  ->  A  C_  1o ) )
42, 3ax-mp 5 . 2  |-  ( A  e.  suc  1o  ->  A 
C_  1o )
5 df-2o 6475 . 2  |-  2o  =  suc  1o
64, 5eleq2s 2291 1  |-  ( A  e.  2o  ->  A  C_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   Tr wtr 4131   suc csuc 4400   1oc1o 6467   2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator