Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sbime | GIF version |
Description: A strengthening of sbie 1779 (same proof). (Contributed by BJ, 16-Dec-2019.) |
Ref | Expression |
---|---|
bj-sbime.nf | ⊢ Ⅎ𝑥𝜓 |
bj-sbime.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-sbime | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sbime.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | nfri 1507 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
3 | bj-sbime.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | bj-sbimeh 13653 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 |
This theorem is referenced by: setindis 13849 bdsetindis 13851 |
Copyright terms: Public domain | W3C validator |