| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sbime | GIF version | ||
| Description: A strengthening of sbie 1815 (same proof). (Contributed by BJ, 16-Dec-2019.) |
| Ref | Expression |
|---|---|
| bj-sbime.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-sbime.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-sbime | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sbime.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1543 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | bj-sbime.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | bj-sbimeh 15782 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: setindis 15977 bdsetindis 15979 |
| Copyright terms: Public domain | W3C validator |