Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sbime GIF version

Theorem bj-sbime 13808
Description: A strengthening of sbie 1784 (same proof). (Contributed by BJ, 16-Dec-2019.)
Hypotheses
Ref Expression
bj-sbime.nf 𝑥𝜓
bj-sbime.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-sbime ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem bj-sbime
StepHypRef Expression
1 bj-sbime.nf . . 3 𝑥𝜓
21nfri 1512 . 2 (𝜓 → ∀𝑥𝜓)
3 bj-sbime.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3bj-sbimeh 13807 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1453  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756
This theorem is referenced by:  setindis  14002  bdsetindis  14004
  Copyright terms: Public domain W3C validator