| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sbime | GIF version | ||
| Description: A strengthening of sbie 1805 (same proof). (Contributed by BJ, 16-Dec-2019.) |
| Ref | Expression |
|---|---|
| bj-sbime.nf | ⊢ Ⅎ𝑥𝜓 |
| bj-sbime.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-sbime | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-sbime.nf | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) |
| 3 | bj-sbime.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | bj-sbimeh 15502 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: setindis 15697 bdsetindis 15699 |
| Copyright terms: Public domain | W3C validator |